International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Estimating the Ratio of a Crisp Variable and a Neutrosophic Variable

Carlos N. Bouza-Herrera , Mir Subzar

The estimation of the ratio of two means is studied within the neutrosophic theory framework. The variable of interest Y is measured in a sample of units and the auxiliary variable X is obtainable for all units using records  or predictions. They are correlated and the sample is selected using simple random sampling. The indeterminacy of the auxiliary variable is considered and is modeled as a neutrosophic variable.  The bias and variance of the proposed estimator are derived.

Read More

Doi: https://doi.org/10.54216/IJNS.0110101

Vol. 11 Issue. 1 PP. 09-21, (2020)

A Novel Approach for Assessing the Reliability of Data Contained in a Single Valued Neutrosophic Number and its Application in Multiple Criteria Decision Making

Dragisa Stanujkic , Darjan Karabasevic , Florentin Smarandache , Gabrijela Popovic

  Multiple criteria decision making is one of the many areas where neutrosophic sets have been successfully applied to solve various problems so far. Compared to a fuzzy set, and similar sets, neutrosophic sets use more membership functions which makes them suitable for using complex evaluation criteria in multiple criteria decision making. On the other hand, the application of three membership functions makes evaluation somewhat more complex compared to evaluation using fuzzy sets. The reliability of the data used to solve a problem can have an impact on the selection of the appropriate solution/alternative. Therefore, this paper discusses an approach that can be used to assess the reliability of information collected by surveying respondents. The usability of the proposed approach is demonstrated in the numerical illustration of the supplier selection.

Read More

Doi: https://doi.org/10.54216/IJNS.0110102

Vol. 11 Issue. 1 PP. 22-29, (2020)

Plithogenic Cubic Sets

S.P. Priyadharshini , F. Nirmala Irudayam , F. Smarandache

 In this article, using the concepts of cubic set and plithogenic set, the ideas of  plithogenic fuzzy cubic set, plithogenic intuitionistic fuzzy cubic set, Plithogenic neutrosophic cubic set are introduced and its corresponding internal and external cubic sets are discussed with examples. Primary properties of the Plithogenic neutrosophic cubic sets were also discussed.This concept is extremely suitable for addressing problems involving multiple attribute decision making as this plithogenic neutrosophic set are described by four or more value of attributes and the accuracy of the result is also so precise.  

Read More

Doi: https://doi.org/10.54216/IJNS.0110103

Vol. 11 Issue. 1 PP. 30-38, (2020)

Interval Valued Neutrosophic Shortest Path Problem by A* Algorithm

S.Krishna Prabha , Said Broumi , Florentin Smarandache

  Many researchers have been proposing various algorithms to unravel different types of fuzzy shortest path problems. There are many algorithms like Dijkstra’s, Bellman-Ford,Floyd-Warshall and kruskal’s etc are existing for solving the shortest path problems. In this work a shortest path problem with interval valued neutrosophic numbers is investigated using the proposed algorithm. A* algorithm is extensively applied in pathfinding and graph traversal.Unlike the other algorithms mentioned above, A* algorithm entails heuristic function to uncover the cost of path that traverses through the particular state. In the structured  work A* algorithm is applied to unravel the length  of the shortest path by utilizing ranking function from the source node to the destination node. A* algorithm is executed by applying best first search with the help of this search, it greedily decides which vertex to investigate subsequently. A* is equally complete and optimal if an acceptable heuristic is concerned. The arc lengths in interval valued neutrosophic numbers are defuzzified using the score function.. A numerical example is used to illustrate the proposed approach.  

Read More

Doi: https://doi.org/10.54216/IJNS.0110104

Vol. 11 Issue. 1 PP. 53-61, (2020)

Cryptography in Terms of Triangular Neutrosophic Numbers with Real Life Applications

Ali Hamza , Muhammad Naveed Jafar , Ahtasham Habib , Sara Farooq , Ezgi Türkarslan

  In this article, our main focus is to put forward the concept of Cryptography in terms of triangular neutrosophic numbers. This kind of cryptography is really reliable, manual, secure, and based on few simple steps. All the encryption and decryption are easy to proceed (mention below). As we know, Public-key cryptography as an indefatigable defender for human privacy and use as information transfer from the ages. various concepts are available with regard to cryptography e.g. Elliptic curve cryptography. TNNC (Triangular neutrosophic numbers cryptography) is familiar with basic concepts of math as well as applicable in different situations e.g. code cryptography, detailed view cryptography, and Graph cryptography encryption facilitate.  

Read More

Doi: https://doi.org/10.54216/IJNS.0110105

Vol. 11 Issue. 1 PP. 39-52, (2020)