International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 15 , Issue 1 , PP: 29-42, 2021 | Cite this article as | XML | PDF | Full Length Article

Neutrosophic Differential Equations That Translate Into Linear

Yaser Ahmad Alhasan 1 * , Abuobida Alfahal 2

  • 1 Deanship of the Preparatory Year, Prince Sattam bin Abdulaziz University, KSA - (y.alhasan@psau.edu.sa)
  • 2 Deanship of the Preparatory Year, Prince Sattam bin Abdulaziz University, KSA - (a.alfahal@psau.edu.sa)
  • Doi: https://doi.org/10.54216/IJNS.150103

    Received:January 21, 2021, Accepted: May 11, 2021
    Abstract

     

    In this paper, the Bernoulli’s neutrosophic differential equations by a neutrosophic thick function are introduced.The main objective is defining a neutrosophic differential equations that translate into linear based on the thick function and finding solutions for this equation. Enough examples are provided to illustrate each idea.

     

    Keywords :

    Neutrosophic differential equations, the Bernoulli&rsquo , s neutrosophic differential equations, neutrosophic thick function.

    References

     

    [1]   F.Smarandache, "Introduction to Neutrosophic Measure, Neutrosophic Integral, and Neutrosophic Probability", Sitech-Education Publisher, Craiova – Columbus, 2013.

     

    [2]  Y.Alhasan, "Concepts of Neutrosophic Complex Numbers", International Journal of Neutrosophic Science,  Volume 8 , Issue 1, pp: 9-18, 2020.

     

    [3]  F.Smarandache "Finite Neutrosophic Complex Numbers, by W. B. Vasantha Kandasamy", Zip Publisher, Columbus, Ohio, USA, PP:1-16, 2011.

     

    [4]  F.Smarandache, "Neutrosophy. / Neutrosophic Probability, Set, and Logic", American Research Press, Rehoboth, USA, 1998.

     

    [5]  F.Smarandache, "Introduction to Neutrosophic statistics", Sitech-Education Publisher, PP:34-44, 2014.

     

    [6]  F.Smarandache, "A Unifying Field in Logics: Neutrosophic Logic, Preface by Charles Le, American Research Press, Rehoboth, 1999, 2000. Second edition of the Proceedings of the First International Conference on Neutrosophy, Neutrosophic Logic, Neutrosophic Set, Neutrosophic Probability and Statistics", University of New Mexico, Gallup, 2001.       

     

    [7]  F.Smarandache, "Proceedings of the First International Conference on Neutrosophy", Neutrosophic Set, Neutrosophic Probability and Statistics, University of New Mexico, 2001.

     

    [8]  F.Smarandache, "Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics" University of New Mexico, Gallup, NM 87301, USA 2002.

     

    [9]  F.Smarandache, "Neutrosophic Precalculus and Neutrosophic Calculus", book, 2015.

     

    [10]         Madeleine Al- Tahan, "Some Results on Single Valued Neutrosophic (Weak) Polygroups", International Journal of Neutrosophic Science,   Volume 2 , Issue 1, PP: 38-46 , 2020.

     

    [11]         S. A. Edalatpanah, "A Direct Model for Triangular Neutrosophic Linear Programming", International Journal of Neutrosophic Science, Volume 1 , Issue 1, PP: 19-28 , 2020

     

    [12]         A. Chakraborty, "A New Score Function of Pentagonal Neutrosophic Number and its Application in Networking Problem", International Journal of Neutrosophic Science,  Volume 1 , Issue 1, PP: 40-51 , 2020

     

    [13]         A. Chakraborty, "Application of Pentagonal Neutrosophic Number in Shortest Path Problem", International Journal of Neutrosophic Science,  Volume 3 , Issue 1, PP: 21-28 , 2020

     

    [14]         A.A. Salama and S.A. Alblowi, "Neutrosophic set and neutrosophic topological space". ISORJ, Mathematics,Volume 3, Issue 4, PP: 31-35, 2012

     

    [15]         A. A. Salama and F. Smarandache. "Filters via Neutrosophic Crisp Sets". Neutrosophic Sets and Systems, Volume 1, PP: 34-38, 2013

     

    [16]         W. Al-Omeri, "Neutrosophic crisp sets via neutrosophic crisp topological spaces". Neutrosophic Sets and Systems, volume 13, PP: 96–104, 2016                    

     

    [17]         J. Ye, "Neutrosophic number linear programming method and its application under neutrosophic number environments", Soft Computing, volume 22, Issue 14, 2018

     

    [18]         F. Smarandache, Neutrosophic Precalculus and Neutrosophic Calculus, University of New Mexico, Digital Repository, Albuquerque, NM, USA, 2015.

     

    [19]         M.  Alaswad, " A Study of the Integration of Neutrosophic Thick Function". International Journal of  Neutrosophic Science, volume 6, PP: 97–105, 2020

     

    Cite This Article As :
    Ahmad, Yaser. , Alfahal, Abuobida. Neutrosophic Differential Equations That Translate Into Linear. International Journal of Neutrosophic Science, vol. , no. , 2021, pp. 29-42. DOI: https://doi.org/10.54216/IJNS.150103
    Ahmad, Y. Alfahal, A. (2021). Neutrosophic Differential Equations That Translate Into Linear. International Journal of Neutrosophic Science, (), 29-42. DOI: https://doi.org/10.54216/IJNS.150103
    Ahmad, Yaser. Alfahal, Abuobida. Neutrosophic Differential Equations That Translate Into Linear. International Journal of Neutrosophic Science , no. (2021): 29-42. DOI: https://doi.org/10.54216/IJNS.150103
    Ahmad, Y. , Alfahal, A. (2021) . Neutrosophic Differential Equations That Translate Into Linear. International Journal of Neutrosophic Science , () , 29-42 . DOI: https://doi.org/10.54216/IJNS.150103
    Ahmad Y. , Alfahal A. [2021]. Neutrosophic Differential Equations That Translate Into Linear. International Journal of Neutrosophic Science. (): 29-42. DOI: https://doi.org/10.54216/IJNS.150103
    Ahmad, Y. Alfahal, A. "Neutrosophic Differential Equations That Translate Into Linear," International Journal of Neutrosophic Science, vol. , no. , pp. 29-42, 2021. DOI: https://doi.org/10.54216/IJNS.150103