International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 27 , Issue 2 , PP: 175-187, 2026 | Cite this article as | XML | Html | PDF | Full Length Article

Extended EWMA Scheme for Enhanced Maxwell Process Monitoring: An Application to the Industrial Sector

Fuad S. Alduais 1 *

  • 1 Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia - (f.alduais@psau.edu.sa)
  • Doi: https://doi.org/10.54216/IJNS.270215

    Received: June 06, 2025 Revised: July 06, 2025 Accepted: August 22, 2025
    Abstract

    The neutrosophic framework offers a promising direction for modeling data affected by uncertainty. Many quality characteristics in the production industry follow the asymmetric structure of the Maxwell distribution. The neutrosophic VSQ chart serves as a novel tool for monitoring parameters of the neutrosophic Maxwell distribution. However, the existing structure of the neutrosophic VSQ chart, based on the basic Shewhart model, is generally unable to detect small shifts in the production process. In this study, a new control chart designed following the structure of the EWMA chart is developed to efficiently monitor Maxwell-distributed neutrosophic data. The run length properties of the proposed scheme are studied, and Monte Carlo simulations are performed to investigate its statistical characteristics. Numerical results indicate that the proposed chart is effective in detecting small shifts in the process. The practical utility of the proposed chart is demonstrated through a real-world industrial dataset affected by uncertainty.

    Keywords :

    Control chart , Run length , Estimation , Simulation , Neutrosophic logic

    References

    [1]       G. Suman and D. Prajapati, “Control chart applications in healthcare: A literature review,” Int. J. Metrol. Qual. Eng., vol. 9, p. 5, 2018.

     

    [2]       M. Riaz and F. Muhammad, “An application of control charts in manufacturing industry,” J. Stat. Econometric Methods, vol. 1, no. 1, pp. 77–92, 2012.

     

    [3]       S. A. Yourstone and W. J. Zimmer, “Non-normality and the design of control charts for averages,” Decision Sci., vol. 23, no. 5, pp. 1099–1113, 1992.

     

    [4]       Y.-C. Lin and C.-Y. Chou, “Non-normality and the variable parameters X control charts,” Eur. J. Oper. Res., vol. 176, no. 1, pp. 361–373, 2007.

     

    [5]       S. A. Abbasi and A. Miller, “On proper choice of variability control chart for normal and non-normal processes,” Qual. Rel. Eng. Int., vol. 28, no. 3, pp. 279–296, 2012.

     

    [6]       P. R. Nelson, “Control charts for Weibull processes with standards given,” IEEE Trans. Rel., vol. 28, no. 4, pp. 283–288, 2009.

     

    [7]       C. W. Zhang, M. Xie, J. Y. Liu, and T. N. Goh, “A control chart for the Gamma distribution as a model of time between events,” Int. J. Prod. Res., vol. 45, no. 23, pp. 5649–5666, 2007.

     

    [8]       S. Kinat, M. Amin, and T. Mahmood, “GLM-based control charts for the inverse Gaussian distributed response variable,” Qual. Rel. Eng. Int., vol. 36, no. 2, pp. 765–783, 2020.

     

    [9]       Z. Khan, A. Saghir, A. I. Katona, and Z. T. Kosztyán, “Optimizing P-Chart performance using a percentage-based framework: Application to nonconforming items in the manufacturing sector,” IEEE Access, 2025.

     

    [10]    R. Smith, J. M. Doe, and L. T. Johnson, “A novel approach to control charts using fuzzy logic for quality improvement,” Qual. Eng., vol. 36, no. 2, pp. 123–135, 2022, doi: 10.1080/08982112.2022.2034567.

     

    [11]    M. Aslam, R. A. R. Bantan, and N. Khan, “Design of a new attribute control chart under neutrosophic statistics,” Int. J. Fuzzy Syst., vol. 21, pp. 433–440, 2019.

     

    [12]    F. Shah, M. Aslam, and Z. Khan, “New control chart based on neutrosophic Maxwell distribution with decision making applications,” Neutrosophic Sets Syst., vol. 53, pp. 297–316, 2023.

     

    [13]    Z. Khan, A. Saghir, A. Katona, and Z. T. Kosztyán, “EWMA control chart framework for efficient Maxwell quality characteristic monitoring: An application to the aerospace industry,” Comput. Ind. Eng., vol. 200, p. 110753, 2025.

     

    [14]    M. P. Hossain, M. H. Omar, and M. Riaz, “New V control chart for the Maxwell distribution,” J. Stat. Comput. Simul, vol. 87, no. 3, pp. 594–606, 2017.

     

    [15]    M. Aslam, A. H. Al-Marshadi, and N. Khan, “A new X-bar control chart for using neutrosophic exponentially weighted moving average,” Mathematics, vol. 7, no. 10, p. 957, 2019.

     

    [16]    R. Alhabib, M. M. Ranna, H. Farah, and A. A. Salama, “Some neutrosophic probability distributions,” Infinite Study, 2018.

     

    [17]    F. Smarandache, Introduction to Neutrosophic Measure, Neutrosophic Integral, and Neutrosophic Probability. Infinite Study, 2013.

     

    [18]    S. Patel and K. R. Sharma, “Statistical process control in manufacturing: A machine learning perspective,” J. Manuf. Syst., vol. 62, pp. 1–10, 2023, doi: 10.1016/j.jmsy.2022.11.004.

     

    [19]    M. T. Nguyen and H. L. Tran, “Optimizing quality control processes using hybrid statistical techniques,” Int. J. Prod. Econ., vol. 245, p. 108438, 2022, doi: 10.1016/j.ijpe.2021.108438.

     

    [20]    M. B. Zeina, M. Abobala, A. Hatip, S. Broumi, and S. J. Mosa, “Algebraic approach to literal neutrosophic Kumaraswamy probability distribution,” Neutrosophic Sets Syst., vol. 54, pp. 124–138, 2023.

     

    [21]    C. Granados, A. K. Das, and B. Das, “Some continuous neutrosophic distributions with neutrosophic parameters based on neutrosophic random variables,” Adv. Theory Nonlinear Anal. Appl., vol. 6, no. 3, pp. 380–389, 2022.

     

    [22]    K. F. H. Alhasan and F. Smarandache, Neutrosophic Weibull Distribution and Neutrosophic Family Weibull Distribution. Infinite Study, 2019.

     

    [23]    S. K. Patro and F. Smarandache, The Neutrosophic Statistical Distribution, More Problems, More Solutions. Infinite Study, 2016.

     

    [24]    R. A. K. Sherwani, T. Arshad, M. Albassam, M. Aslam, and S. Abbas, “Neutrosophic entropy measures for the Weibull distribution: Theory and applications,” Complex Intell. Syst., vol. 7, no. 6, pp. 3067–3076, 2021.

     

    [25]    E. Zell et al., “Assessment of solar radiation resources in Saudi Arabia,” Sol. Energy, vol. 119, pp. 422–438, 2015.

    Cite This Article As :
    S., Fuad. Extended EWMA Scheme for Enhanced Maxwell Process Monitoring: An Application to the Industrial Sector. International Journal of Neutrosophic Science, vol. , no. , 2026, pp. 175-187. DOI: https://doi.org/10.54216/IJNS.270215
    S., F. (2026). Extended EWMA Scheme for Enhanced Maxwell Process Monitoring: An Application to the Industrial Sector. International Journal of Neutrosophic Science, (), 175-187. DOI: https://doi.org/10.54216/IJNS.270215
    S., Fuad. Extended EWMA Scheme for Enhanced Maxwell Process Monitoring: An Application to the Industrial Sector. International Journal of Neutrosophic Science , no. (2026): 175-187. DOI: https://doi.org/10.54216/IJNS.270215
    S., F. (2026) . Extended EWMA Scheme for Enhanced Maxwell Process Monitoring: An Application to the Industrial Sector. International Journal of Neutrosophic Science , () , 175-187 . DOI: https://doi.org/10.54216/IJNS.270215
    S. F. [2026]. Extended EWMA Scheme for Enhanced Maxwell Process Monitoring: An Application to the Industrial Sector. International Journal of Neutrosophic Science. (): 175-187. DOI: https://doi.org/10.54216/IJNS.270215
    S., F. "Extended EWMA Scheme for Enhanced Maxwell Process Monitoring: An Application to the Industrial Sector," International Journal of Neutrosophic Science, vol. , no. , pp. 175-187, 2026. DOI: https://doi.org/10.54216/IJNS.270215