International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 26 , Issue 1 , PP: 206-222, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Continuous Maps and Irresolute Maps Via Fuzzy Hypersoft θ Open set

P. Revathi 1 , B. Premamalini 2 * , K. Chitirakala 3 , A. Vadivel 4

  • 1 Government Polytechnic College, Kuduveli, Chidambaram - 608 305, India; Department of Mathematics, Annamalai University, Annamalai Nagar - 608 002, India - (revathimathsau@gmail.com)
  • 2 Department of Mathematics, Annamalai University, Annamalai Nagar - 608 002, India - (premamalinips@gmail.com)
  • 3 Department of Mathematics, M.Kumarasamy College of Engineering, Karur - 639 113, India - (chitrakalalaksana@gmail.com)
  • 4 Department of Mathematics, Annamalai University, Annamalai Nagar - 608 002, India; PG and Research Department of Mathematics, Arignar Anna Government Arts College, Namakkal - 637 002, India - (avmaths@gmail.com)
  • Doi: https://doi.org/10.54216/IJNS.260118

    Received: October 21, 2024 Revised: January 01, 2025 Accepted: January 31, 2025
    Abstract

    The purpose of this paper is to introduce and study fuzzy hypersoft θ continuous maps, fuzzy hypersoft θ semi continuous maps, fuzzy hypersoft θ pre continuous maps and fuzzy hypersoft θ irresolute maps in fuzzy hypersoft topological spaces with examples. Further, we derived some useful results and properties related to them.

    Keywords :

    Fuzzy hypersoft &theta , continuous maps , Fuzzy hypersoft &theta , semi continuous maps , Fuzzy hypersoft &theta , pre continuous maps , fuzzy hypersoft &theta , irresolute maps

    References

    [1] M. Abbas, G. Murtaza and F. Smarandache, Basic operations on hypersoft sets and hypersoft point, Neutrosophic Sets and Systems, 35, (2020), 407-421.

    [2] M. Ahsan, M. Saeed and A.U. Rahman, A Theoretical and Analytical Approach for Fundamental Framework of Composite Mappings on Fuzzy Hypersoft Classes, Neutrosophic Sets and Systems, 45, (2021), 268-285.

    [3] D. Ajay and J. Joseline Charisma, Neutrosophic hypersoft topological spaces, Neutrosophic Sets and Systems, 40, (2021), 178-194.

    [4] D. Ajay, J. Joseline Charisma, N. Boonsatit, P. Hammachukiattikul and G. Rajchakit Neutrosophic semiopen hypersoft sets with an application to MAGDM under the COVID-19 scenario, Hindawi Journal of Mathematics, 2021, (2021), 1-16.

    [5] M. Caldas, M. Ganster, D. N. Georgiou, S. Jafari and T. Noiri, θ-semiopen sets and separation axioms in topological spaces, Carpathian Journal of Mathematics, 24 (1) (2008), 13-22.

    [6] M. Caldas, S. Jafari and M. M. Kovar, Some properties of θ-open sets, Divulg. Mat., 12(2) (2004), 161- 169.

    [7] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.

    [8] J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Internat. J. Math. Math. Sci., 19, (1996), 303–310.

    [9] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37, (1999), 19-31.

    [10] Saeed, M., Ahsan, M., Siddique, M.K., Ahmad M.R., A Study of The Fundamentals of Hypersoft Set Theory , International Journal of Scientific Engineering Research, 11 (1), (2020).

    [11] M. Saeed, A. U. Rahman, M. Ahsan, F. Smarandache, An inclusive study on fundamentals of hypersoft set, Theory and Applications of Hypersoft Set, Pons Publishing House, Brussels, (2021), 1–23.

    [12] S. Saha, Fuzzy δ-continuous mappings, Journal of Mathematical Analysis and Applications, 126 (1987), 130-142.

    [13] M. Shabir and M. Naz, On soft topological spaces, Comput. Math. Appl., 61, (2011), 1786-1799.

    [14] F. Smarandache, Extension of soft set to hypersoft set, and then to plithogenic hypersoft set, Neutrosophic Sets and Systems, 22, (2018), 168-170.

    [15] N. V. Velicko, H-Closed Topological Spaces, Amer. Math. Soc. Transl., 78 (No 2), (1968),103-118.

    [16] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (3), (1965), 338–353.

     

    Cite This Article As :
    Revathi, P.. , Premamalini, B.. , Chitirakala, K.. , Vadivel, A.. Continuous Maps and Irresolute Maps Via Fuzzy Hypersoft θ Open set. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 206-222. DOI: https://doi.org/10.54216/IJNS.260118
    Revathi, P. Premamalini, B. Chitirakala, K. Vadivel, A. (2025). Continuous Maps and Irresolute Maps Via Fuzzy Hypersoft θ Open set. International Journal of Neutrosophic Science, (), 206-222. DOI: https://doi.org/10.54216/IJNS.260118
    Revathi, P.. Premamalini, B.. Chitirakala, K.. Vadivel, A.. Continuous Maps and Irresolute Maps Via Fuzzy Hypersoft θ Open set. International Journal of Neutrosophic Science , no. (2025): 206-222. DOI: https://doi.org/10.54216/IJNS.260118
    Revathi, P. , Premamalini, B. , Chitirakala, K. , Vadivel, A. (2025) . Continuous Maps and Irresolute Maps Via Fuzzy Hypersoft θ Open set. International Journal of Neutrosophic Science , () , 206-222 . DOI: https://doi.org/10.54216/IJNS.260118
    Revathi P. , Premamalini B. , Chitirakala K. , Vadivel A. [2025]. Continuous Maps and Irresolute Maps Via Fuzzy Hypersoft θ Open set. International Journal of Neutrosophic Science. (): 206-222. DOI: https://doi.org/10.54216/IJNS.260118
    Revathi, P. Premamalini, B. Chitirakala, K. Vadivel, A. "Continuous Maps and Irresolute Maps Via Fuzzy Hypersoft θ Open set," International Journal of Neutrosophic Science, vol. , no. , pp. 206-222, 2025. DOI: https://doi.org/10.54216/IJNS.260118