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Abstract

The purpose of this paper is to introduce and study fuzzy hypersoft θ continuous maps, fuzzy hypersoft θ
semi continuous maps, fuzzy hypersoft θ pre continuous maps and fuzzy hypersoft θ irresolute maps in fuzzy
hypersoft topological spaces with examples. Further, we derived some useful results and properties related to
them.
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1 Introduction

The real-world decision-making problems in medical diagnosis, engineering, economics, management com-
puter science, artificial intelligence, social sciences, environmental science and sociology contain more uncer-
tain and inadequate data. Traditional mathematical methods cannot deal with these kinds of problems due to
imprecise data. To deal with the problems with uncertainty, Zadeh16 introduced the fuzzy set in 1965 which
contains the membership value in [0,1]. A fuzzy set is a set where each element of the universe belongs to
it but with some value or degree of belongingness which lies between 0 and 1 and such values are called the
membership value of an element in that set. The topological structure on fuzzy set was undertaken by Chang7

as fuzzy topological space. Molodstov9 introduced a new mathematical tool, soft set theory in 1999 to deal
with uncertainties in which a soft set is a collection of approximate descriptions of an object. A soft set is
a parameterized family of subsets where parameters are the properties, attributes or characteristics of the ob-
jects. The soft set theory has several applications in different fields such as decision-making, optimization,
forecasting, data analysis etc. Shabir and Naz13 presented soft topological spaces.

Smarandache14 extended the notion of a soft set to a hypersoft set and then to plithogenic set by replacing a
function with a multi-argument function described in the cartesian product with a different set of attributes.
This new concept of hypersoft set is more flexible than the soft set and more suitable in decision-making
issues involving a different kinds of attributes. Saeed et al.10, 11 studied the fundamentals of hypersoft set
theory by introducing aggregate operators, relations, functions, matrices and operations on hypersoft matrices.
Abbas et al.1 defined the basic operations on hypersoft sets and hypersoft point in the fuzzy, intuitionistic and
neutrosophic environments. Ajay and Charisma3 introduced fuzzy hypersoft topology, intuitionistic hypersoft
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topology and neutrosophic hypersoft topology. Neutrosophic hypersoft topology is the generalized framework
which generalizes intuitionistic hypersoft topology and fuzzy hypersoft topology. Ajay et al.4 defined fuzzy
hypersoft semi-open sets and developed an application in multiattribute group decision-making. The concept
of contra continuous function in general topology was introduced by Dontchev8 in 1996. Vadivel et al.?

introduced generalized fuzzy contra e-continuous functions in fuzzy topological spaces. Ahsan et al.2 studied
a theoretical and analytical approach for fundamental framework of composite mappings on fuzzy hypersoft
classes.

Saha12 defined δ-open sets and continuous maps in fuzzy topological spaces. The δ-open sets, e-open sets
in neutrosophic, neutrosophic soft, fuzzy hypersoft, neutrosophic hypersoft topological spaces are introduced
and its maps, separation axioms and compact spaces are studied recently.

The class of sets namely, θ open sets are playing more important role in topological spaces, because of their
applications in various fields of Mathematics and other real fields. In 1968 Velicko15 defined θ open set in
H-closed Topological Spaces. In,5, 6 Caldas et al. studied various kinds of θ open sets and their properties in
topological spaces. The concept of θ-open sets in fuzzy hypersoft topological spaces is introdued recently.

In this paper, we develop the concept of fuzzy hypersoft θ continuity in fuzzy hypersoft topological spaces and
some of their properties are analyzed with examples. Added to that, fuzzy hypersoft θ semi continuous maps,
fuzzy hypersoft θ pre continuous maps and fuzzy hypersoft θ irresolute maps are developed and the relation
between them are discussed.

2 Preliminaries

Definition 2.1. 16 Let M be an initial universe. A function λ from M into the unit interval I is called a fuzzy
set in M. For every m ∈ M, λ(m) ∈ I is called the grade of membership of m in λ. Some authors say that λ
is a fuzzy subset of M instead of saying that λ is a fuzzy set in M. The class of all fuzzy sets from M into the
closed unit interval I will be denoted by IM.

Definition 2.2. 9 Let M be an initial universe, Q be a set of parameters and P(M) be the power set of M. A
pair (H̃,Q) is called the a soft set over M where H̃ is a mapping H̃ : Q → P(M). In other words, the soft
set is a parametrized family of subsets of the set M.

Definition 2.3. 14 Let M be an initial universe and P(M) be the power set of M. Consider q1, q2, q3, ..., qn for
n ≥ 1, be n distinct attributes, whose corresponding attribute values are respectively the sets Q1, Q2, ..., Qn

with Qi ∩ Qj = ∅, for i ̸= j and i, j ∈ {1, 2, ..., n}. Then the pair (H̃, Q1 × Q2 × ... × Qn) where
H̃ : Q1 ×Q2 × ...×Qn → P(M) is called a hypersoft set over M.

Definition 2.4. 1 Let M be an initial universal set and Q1, Q2, ..., Qn be pairwise disjoint sets of parameters.
Let P(M) be the set of all fuzzy sets of M. Let Ei be the nonempty subset of the pair Qi for each i =
1, 2, ..., n. A fuzzy hypersoft set (briefly, FHSs) over M is defined as the pair (H̃, E1×E2× ...×En) where
H̃ : E1 × E2 × ... × En → P(M) and H̃(E1 × E2 × ... × En) = {(q, ⟨m, µH̃(q)(m)⟩ : m ∈ M) : q ∈
E1×E2×...×En ⊆ Q1×Q2×...×Qn} where µH̃(q)(m) is the membership value such that µH̃(q)(m) ∈ [0, 1].

Definition 2.5. 1 Let M be an universal set and (H̃,∧1) and (G̃,∧2) be two FHSs’s over M. Then (H̃,∧1)
is the fuzzy hypersoft subset of (G̃,∧2) if µH̃(q)(m) ≤ µG̃(q)(m).

It is denoted by (H̃,∧1) ⊆ (G̃,∧2).

Definition 2.6. 1 Let M be an universal set and (H̃,∧1) and (G̃,∧2) be FHSs’s over M. (H̃,∧1) is equal to
(G̃,∧1) if µH̃(q)(m) = µG̃(q)(m).

Definition 2.7. 1 A FHSs (H̃,∧) over the universe set M is said to be null fuzzy hypersoft set if µH̃(q)(m) =

0, ∀q ∈ ∧ and m ∈ M. It is denoted by 0̃(M,Q).

A FHSs (G̃,∧) over the universal set M is said to be absolute fuzzy hypersoft set if µH̃(q)(m) = 1 ∀q ∈ ∧
and m ∈ M. It is denoted by 1̃(M,Q).

Clearly, 0̃c(M,Q) = 1̃(M,Q) and 1̃c(M,Q) = 0̃(M,Q).
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Definition 2.8. 1 Let M be an universal set and (H̃,∧) be FHSs over M. (H̃,∧)c is the complement of
(H̃,∧) if µc

H̃(q)
(m) = 1̃(M,Q) − µH̃(q)(m) where ∀q ∈ ∧ and ∀m ∈ M. It is clear that ((H̃,∧)c)c = (H̃,∧).

Definition 2.9. 1 Let M be the universal set and (H̃,∧1) and (G̃,∧2) be FHSs’s over M. Extended union
(H̃,∧1) ∪ (G̃,∧2) is defined as

µ((H̃,∧1) ∪ (G̃,∧2)) =


µH̃(q)(m) if q ∈ ∧1 − ∧2

µG̃(q)(m) if q ∈ ∧2 − ∧1

max{µH̃(q)(m), µG̃(q)(m)} if q ∈ ∧1 ∩ ∧2

Definition 2.10. 1, 3 Let M be the universal set and (H̃,∧1) and (G̃,∧2) be FHSs’s over M. Extended
intersection (H̃,∧1) ∩ (G̃,∧2) is defined as

µ((H̃,∧1) ∩ (G̃,∧2)) =


µH̃(q)(m) ifq ∈ ∧1 − ∧2

µG̃(q)(m) ifq ∈ ∧2 − ∧1

min{µH̃(q)(m), µG̃(q)(m)} ifq ∈ ∧1 ∩ ∧2

Definition 2.11. 3 Let (M, Q) be the family of all FHSs’s over the universe set M and τ ⊆ FHSs(M, Q).
Then τ is said to be a fuzzy hypersoft topology (briefly, FHSt) on M if

(i) 0̃(M,Q) and 1̃(M,Q) belongs to τ

(ii) the union of any number of FHSs’s in τ belongs to τ

(iii) the intersection of finite number of FHSs’s in τ belongs to τ .

Then (M, Q, τ) is called a fuzzy hypersoft toplogical space (briefly, FHSts) over M. Each member of τ is
said to be fuzzy hypersoft open set (briefly, FHSos). A FHSs (H̃,∧) is called a fuzzy hypersoft closed set
(briefly, FHScs) if its complement (H̃,∧)c is FHSos.

Definition 2.12. 3 Let (M, Q, τ) be a FHSts over M and (H̃,∧) be a FHSs in M. Then,

(i) the fuzzy hypersoft interior (briefly, FHSint) of (H̃,∧) is defined as FHSint(H̃,∧) = ∪{(G̃,∧) :
(G̃,∧) ⊆ (H̃,∧) where (G̃,∧) is FHSos}.

(ii) the fuzzy hypersoft closure (briefly, FHScl) of (H̃,∧) is defined as FHScl(H̃,∧) = ∩{(G̃,∧) :
(G̃,∧) ⊇ (H̃,∧) where (G̃,∧) is FHScs}.

Definition 2.13. 4 Let (M, Q, τ) be a FHSts over M and (H̃,∧) be a FHSs in M. Then, (H̃,∧) is called
the fuzzy hypersoft semiopen set (briefly, FHSSos) if (H̃,∧) ⊆ FHScl(int(H̃,∧)).

A FHSs (H̃,∧) is called a fuzzy hypersoft semiclosed set (briefly, FHSScs) if its complement (H̃,∧)c is a
FHSSos.

Definition 2.14. 2 Let (M, L) and (N,M) be classes of FHSs’s over M and N with attributes L and M
respectively. Let ω : M → N and ν : L → M be mappings. Then a FHS mappings h = (ω, ν) : (M, L) →
(N,M) is defined as follows, for a FHSs (H̃,∧)A in (M, L), f(H̃,∧)A is a FHSs in (N,M) obtained
as follows, for β ∈ ν(L) ⊆ M and n ∈ N, h(H̃,∧)A(β)(n) =

⋃
α∈ν−1(β)

⋂
A,s∈ω−1(n)

(α)µsh(H̃,∧)A is

called a fuzzy hypersoft image of a FHSs (H̃,∧). Hence ((H̃,∧)A, h(H̃,∧)A) ∈ h, where (H̃,∧)A ⊆
(M, L), h(H̃,∧)A ⊆ (N,M).

Definition 2.15. 2 If h : (M, L) → (N,M) be a FHS mapping, then FHS class (M, L) is called the domain
of h and the FHS class (G̃,∧) ∈ (N,M) : (G̃,∧) = h(H̃,∧)) for some (H̃,∧) ∈ (M, L) is called the range
of h. The FHS class (N,M) is called co-domain of h.
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Definition 2.16. 2 If h : (M, L) → (N,M) be a FHS mapping and (G̃,∧)B , a FHSs in (N,M) where
ω : M → N, ν : L → M and B ⊆ M . Then h−1(G̃,∧)B is a FHSs in (M, L) defined as follows, for
α ∈ ν−1(B) ⊆ L and m ∈ M, h−1(G̃,∧)B(α)(m) = (ν(α))µp(m)h−1(G̃,∧)B is called a FHS inverse
image of (G̃,∧)B .

Definition 2.17. 2 Let h = (ω, ν) be a FHS mapping of a FHS class (M, L) into a FHS class (N,M).
Then

(i) h is said to be a one-one (or injection) FHS mapping if for both ω : M → N and ν : L → M are
one-one.

(ii) h is said to be a onto (or surjection) FHS mapping if for both ω : M → N and ν : L → M are onto.

If h is both one-one and onto, then h is called a one-one onto (or bijective) correspondance of FHS mapping.

Definition 2.18. 2 If h = (ω, ν) : (M, L) → (N,M) and g = (m,n) : (N,M) → (P,N) are two FHS
mappings, then their composite g ◦ h is a FHS mapping of (M, L) into (P,N) such that for every (H̃,∧)A ∈
(M, L), (g◦h)(H̃,∧)A = g(h(H̃,∧)A). For β ∈ n(M) ⊆ N and p ∈ P , it is defined as g(h(H̃,∧)A(β)(p) =⋃
α∈n−1(β)

⋂
h(A),s∈m−1(p)

(α)µs.

Definition 2.19. 2 Let h = (ω, ν) be a FHS mapping where ω : M → M and ν : L → L. Then h is said to
be a FHS identity mapping if for both ω and ν are identity mappings.

Definition 2.20. 2 A one-one onto FHS mapping h = (ω, ν) : (M, L) → (N,M) is called FHS invertable
mapping. Its FHS inverse mapping is denoted by h−1 = (ω−1, ν−1) : (M, L) → (N,M).

3 Fuzzy Hypersoft θ Continuous Maps

In this section, fuzzy hypersoft θ continuous maps are introduced and its related properties are discusssed.

Definition 3.1. Consider any two FHSts (M, L, τ) and (N,M, σ). A map h : (M, L, τ) → (N,M, σ) is
said to be FHSθ (resp. θS, δS, δP , θP) continuous (in short, FHSθCts (resp. FHSθSCts, FHSδSCts,
FHSδPCts&FHSθPCts)) if the inverse image of each FHSos in (N,M, σ) is a FHSθos (resp. FHSθSos,
FHSδSos, FHSδPos & FHSθPos) in (M, L, τ).

Example 3.2. Let M = {m1,m2} and N = {n1, n2} be the FHS initial universes and the attributes be
L = Q1 ×Q2 and M = Q′

1 ×Q′
2 respectively. The attributes are given as:

Q1 = {a1, a2, a3}, Q2 = {b1, b2}
Q′

1 = {c1, c2, c3}, Q′
2 = {d1, d2}.

Let (M, L), (N,M) be the classes of FHS sets. Let the FHSs’s (H̃1,∧1), (H̃2,∧1), (H̃3,∧3), (H̃4,∧3),
(H̃5,∧3), (H̃6,∧3), (H̃7,∧3), (H̃8,∧3) over the universe M be

(H̃1,∧1) =

{
⟨(a1, b1), {m1

0.8 ,
m2

0.7}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩

}

(H̃2,∧1) =

{
⟨(a1, b1), {m1

0.2 ,
m2

0.3}⟩,
⟨(a2, b1), {m1

0.3 ,
m2

0.5}⟩

}

(H̃3,∧2) =

{
⟨(a1, b1), {m1

0.7 ,
m2

0.9}⟩,
⟨(a1, b2), {m1

0.6 ,
m2

0.4}⟩

}

(H̃4,∧3) =

⟨(a1, b1), {m1

0.8 ,
m2

0.9}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.6 ,
m2

0.4}⟩
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(H̃5,∧3) =

⟨(a1, b1), {m1

0.7 ,
m2

0.7}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.6 ,
m2

0.4}⟩


(H̃6,∧3) =

⟨(a1, b1), {m1

0.7 ,
m2

0.9}⟩,
⟨(a2, b1), {m1

0.3 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.6 ,
m2

0.4}⟩


(H̃7,∧3) =

⟨(a1, b1), {m1

0.2 ,
m2

0.3}⟩,
⟨(a2, b1), {m1

0.3 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.6 ,
m2

0.4}⟩


(H̃8,∧3) =

⟨(a1, b1), {m1

0.7 ,
m2

0.9}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.6 ,
m2

0.4}⟩


τ = {0̃(M,Q), 1̃(M,Q), (H̃1,∧1), (H̃2,∧1), (H̃3,∧2), (H̃4,∧3), (H̃5,∧3), (H̃6,∧3), (H̃7,∧3), (H̃8,∧3), } is FHSts.

Let the FHSs′s (G̃1,∧1), (G̃2,∧1) over the universe N be

(G̃1,∧1) =

{
⟨(c2, d1), { n1

0.7 ,
n2

0.8}⟩,
⟨(c1, d2), { n1

0.5 ,
n2

0.7}⟩

}

(G̃2,∧1) =

{
⟨(c2, d1), { n1

0.3 ,
n2

0.2}⟩,
⟨(c1, d2), { n1

0.5 ,
n2

0.3}⟩

}

σ = {0̃(N,Q), 1̃(N,Q), (G̃1,∧1), (G̃2,∧1)} is FHSts.

Let h = (ω, ν) : (M, L) → (N,M) be a FHS mapping as follows:

ω(m1) = n2, ω(m2) = n1,
ν(a1, b1) = (c2, d1), ν(a2, b1) = (c1, d2), ν(a1, b2) = (c2, d2)

h−1(G̃1,∧1) = (H̃1,∧1), h
−1(G̃2,∧1) = (H̃2,∧1),

∴ h = (ω, ν) : (M, L) → (N,M) is FHSθCts.

Proposition 3.3. The statements hold but the converse is not.

(i) Each FHSθCts is a FHSθSCts.

(ii) Each FHSθCts is a FHSCts.

(iii) Each FHSθSCts is a FHSSCts.

(iv) Each FHSCts is a FHSPCts.

(v) Each FHSSCts is a FHSθPCts.

(vi) Each FHSPCts is a FHSθPCts.

Proof.

Consider the map h : (M, L, τ) → (N,M, σ)
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(i) Let (G̃,∧) be a FHSos in N. As h is FHSθCts, h−1(G̃,∧) is FHSθos in M. Since all FHSθos are
FHSθSos, h−1(G̃,∧) is FHSθSos in M. Thus h is a FHSθSCts.

(ii) Let (G̃,∧) be a FHSos in N. As h is FHSθCts, h−1(G̃,∧) is FHSθos in M. Since all FHSθos are
FHSos, h−1(G̃,∧) is FHSos in M. Thus h is a FHSCts.

(iii) Let (G̃,∧) be a FHSos in N. As h is FHSθSCts, h−1(G̃,∧) is FHSθSos in M. Since all FHSθSos
are FHSSos, h−1(G̃,∧) is FHSSos in M. Thus h is a FHSSCts.

(iv) Let (G̃,∧) be a FHSos in N. As h is FHSCts, h−1(G̃,∧) is FHSos in M. Since all FHSos are
FHSPos, h−1(G̃,∧) is FHSPos in M. Thus h is a FHSPCts.

(v) Let (G̃,∧) be a FHSos in N. As h is FHSSCts, h−1(G̃,∧) is FHSSos in M. Since all FHSSos
are FHSθPos, h−1(G̃,∧) is FHSθPos in M. Thus h is a FHSθPCts.

(vi) Let (G̃,∧) be a FHSos in N. As h is FHSPCts, h−1(G̃,∧) is FHSPos in M. Since all FHSPos
are FHSθPos, h−1(G̃,∧) is FHSθPos in M. Thus h is a FHSθPCts.

Example 3.4. Let M = {m1,m2} and N = {n1, n2} be the FHS initial universes and the attributes be
L = Q1 ×Q2 and M = Q′

1 ×Q′
2 respectively. The attributes are given as:

Q1 = {a1, a2, a3}, Q2 = {b1, b2}
Q′

1 = {c1, c2, c3}, Q′
2 = {d1, d2}.

Let (M, L), (N,M) be the classes of FHS sets. Let the FHSs’s (H̃1,∧1), (H̃2,∧2), (H̃3,∧2), (H̃4,∧3),
(H̃5,∧3), (H̃6,∧3), (H̃7,∧3) over the universe M be

(H̃1,∧1) =

{
⟨(a1, b1), {m1

0.8 ,
m2

0.6}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩

}

(H̃2,∧2) =

{
⟨(a1, b1), {m1

0.2 ,
m2

0.3}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.4}⟩

}

(H̃3,∧2) =

{
⟨(a1, b1), {m1

0.8 ,
m2

0.7}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.6}⟩

}

(H̃4,∧3) =

⟨(a1, b1), {m1

0.8 ,
m2

0.6}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.4}⟩


(H̃5,∧3) =

⟨(a1, b1), {m1

0.2 ,
m2

0.3}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.4}⟩


(H̃6,∧3) =

⟨(a1, b1), {m1

0.8 ,
m2

0.7}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.6}⟩


(H̃7,∧3) =

⟨(a1, b1), {m1

0.8 ,
m2

0.6}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.6}⟩


τ = {0̃(M,Q), 1̃(M,Q), (H̃1,∧1), (H̃2,∧2), (H̃3,∧2), (H̃4,∧3), (H̃5,∧3), (H̃6,∧3), (H̃7,∧3)} is FHSts.

Let the FHSs (G̃1,∧3) over the universe N be defined as
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(G̃1,∧3) =

⟨(c2, d1), { n1

0.7 ,
n2

0.8}⟩,
⟨(c1, d2), { n1

0.5 ,
n2

0.7}⟩,
⟨(c2, d2), { n1

0.6 ,
n2

0.5}⟩


σ = {0̃(N,Q), 1̃(N,Q), (G̃1,∧3)} is FHSts.

Let h = (ω, ν) : (M, L) → (N,M) be a FHS mapping as follows:

ω(m1) = n2, ω(m2) = n1,
ν(a1, b1) = (c2, d1), ν(a2, b1) = (c1, d2), ν(a1, b2) = (c2, d2)

h−1(G̃1,∧3) = (H̃6,∧3)

h is FHSθSCts but not FHSθCts because (G̃1,∧3) is FHSos in N but h−1(G̃1,∧3) = (H̃6,∧3) is a
FHSθSos but not FHSθos.

Example 3.5. Let M = {m1,m2} and N = {n1, n2} be the FHS initial universes and the attributes be
L = Q1 ×Q2 and M = Q′

1 ×Q′
2 respectively. The attributes are given as:

Q1 = {a1, a2, a3}, Q2 = {b1, b2}
Q′

1 = {c1, c2, c3}, Q′
2 = {d1, d2}.

Let (M, L), (N,M) be the classes of FHS sets. Let the FHSs’s (H̃1,∧1), (H̃2,∧2), (H̃3,∧2), (H̃4,∧3),
(H̃5,∧3), (H̃6,∧3), (H̃7,∧3) over the universe M be

(H̃1,∧1) =

{
⟨(a1, b1), {m1

0.8 ,
m2

0.6}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩

}

(H̃2,∧2) =

{
⟨(a1, b1), {m1

0.2 ,
m2

0.3}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.4}⟩

}

(H̃3,∧2) =

{
⟨(a1, b1), {m1

0.8 ,
m2

0.7}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.6}⟩

}

(H̃4,∧3) =

⟨(a1, b1), {m1

0.8 ,
m2

0.6}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.4}⟩


(H̃5,∧3) =

⟨(a1, b1), {m1

0.2 ,
m2

0.3}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.4}⟩


(H̃6,∧3) =

⟨(a1, b1), {m1

0.8 ,
m2

0.7}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.6}⟩


(H̃7,∧3) =

⟨(a1, b1), {m1

0.8 ,
m2

0.6}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.6}⟩


τ = {0̃(M,Q), 1̃(M,Q), (H̃1,∧1), (H̃2,∧2), (H̃3,∧2), (H̃4,∧3), (H̃5,∧3), (H̃6,∧3), (H̃7,∧3)} is FHSts.

Let the FHSs (G̃1,∧1) over the universe N be defined as

DOI: https://doi.org/10.54216/IJNS.260118 212



International Journal of Neutrosophic Science (IJNS) Vol. 26, No. 01, PP. 206-222, 2025

(G̃1,∧1) =

{
⟨(c2, d1), { n1

0.6 ,
n2

0.8}⟩,
⟨(c1, d2), { n1

0.5 ,
n2

0.7}⟩,

}

σ = {0̃(N,Q), 1̃(N,Q), (G̃1,∧1)} is FHSts.

Let h = (ω, ν) : (M, L) → (N,M) be a FHS mapping as follows:

ω(m1) = n2, ω(m2) = n1,
ν(a1, b1) = (c2, d1), ν(a2, b1) = (c1, d2), ν(a1, b2) = (c2, d2)

h−1(G̃1,∧1) = (H̃1,∧1)

h is FHSCts but not FHSθCts because (G̃1,∧1) is FHSos in N but h−1(G̃1,∧1) = (H̃1,∧1) is a FHSos
but not FHSθos.

Example 3.6. Let M = {m1,m2} and N = {n1, n2} be the FHS initial universes and the attributes be
L = Q1 ×Q2 and M = Q′

1 ×Q′
2 respectively. The attributes are given as:

Q1 = {a1, a2, a3}, Q2 = {b1, b2}
Q′

1 = {c1, c2, c3}, Q′
2 = {d1, d2}.

Let (M, L), (N,M) be the classes of FHS sets. Let the FHSs’s (H̃1,∧1), (H̃2,∧2), (H̃3,∧2), (H̃4,∧3),
(H̃5,∧3), (H̃6,∧3), (H̃7,∧3) over the universe M be

(H̃1,∧1) =

{
⟨(a1, b1), {m1

0.8 ,
m2

0.6}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩

}

(H̃2,∧2) =

{
⟨(a1, b1), {m1

0.2 ,
m2

0.3}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.4}⟩

}

(H̃3,∧2) =

{
⟨(a1, b1), {m1

0.8 ,
m2

0.7}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.6}⟩

}

(H̃4,∧3) =

⟨(a1, b1), {m1

0.8 ,
m2

0.6}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.4}⟩


(H̃5,∧3) =

⟨(a1, b1), {m1

0.2 ,
m2

0.3}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.4}⟩


(H̃6,∧3) =

⟨(a1, b1), {m1

0.8 ,
m2

0.7}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.6}⟩


(H̃7,∧3) =

⟨(a1, b1), {m1

0.8 ,
m2

0.6}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.6}⟩


τ = {0̃(M,Q), 1̃(M,Q), (H̃1,∧1), (H̃2,∧2), (H̃3,∧2), (H̃4,∧3), (H̃5,∧3), (H̃6,∧3), (H̃7,∧3)} is FHSts.

Let the FHSs (G̃1,∧3) over the universe N be defined as
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(G̃1,∧3) =

⟨(c2, d1), { n1

0.6 ,
n2

0.8}⟩,
⟨(c1, d2), { n1

0.5 ,
n2

0.7}⟩,
⟨(c2, d2), { n1

0.4 ,
n2

0.5}⟩


σ = {0̃(N,Q), 1̃(N,Q), (G̃1,∧3)} is FHSts.

Let h = (ω, ν) : (M, L) → (N,M) be a FHS mapping as follows:

ω(m1) = n2, ω(m2) = n1,
ν(a1, b1) = (c2, d1), ν(a2, b1) = (c1, d2), ν(a1, b2) = (c2, d2)

h−1(G̃1,∧3) = (H̃4,∧3)

h is FHSSCts but not FHSθSCts because (G̃1,∧3) is FHSos in N but h−1(G̃1,∧3) = (H̃4,∧3) is a
FHSSos but not FHSθSos.

Example 3.7. Let M = {m1,m2} and N = {n1, n2} be the FHS initial universes and the attributes be
L = Q1 ×Q2 and M = Q′

1 ×Q′
2 respectively. The attributes are given as:

Q1 = {a1, a2, a3}, Q2 = {b1, b2}
Q′

1 = {c1, c2, c3}, Q′
2 = {d1, d2}.

Let (M, L), (N,M) be the classes of FHS sets. Let the FHSs’s (H̃1,∧1), (H̃2,∧2), (H̃3,∧2), (H̃4,∧3),
(H̃5,∧3), (H̃6,∧3), (H̃7,∧3) over the universe M be

(H̃1,∧1) =

{
⟨(a1, b1), {m1

0.8 ,
m2

0.6}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩

}

(H̃2,∧2) =

{
⟨(a1, b1), {m1

0.2 ,
m2

0.3}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.4}⟩

}

(H̃3,∧2) =

{
⟨(a1, b1), {m1

0.8 ,
m2

0.7}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.6}⟩

}

(H̃4,∧3) =

⟨(a1, b1), {m1

0.8 ,
m2

0.6}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.4}⟩


(H̃5,∧3) =

⟨(a1, b1), {m1

0.2 ,
m2

0.3}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.4}⟩


(H̃6,∧3) =

⟨(a1, b1), {m1

0.8 ,
m2

0.7}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.6}⟩


(H̃7,∧3) =

⟨(a1, b1), {m1

0.8 ,
m2

0.6}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.6}⟩


(H̃8,∧3) =

⟨(a1, b1), {m1

0.8 ,
m2

0.7}⟩,
⟨(a2, b1), {m1

0.3 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.6}⟩
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τ = {0̃(M,Q), 1̃(M,Q), (H̃1,∧1), (H̃2,∧2), (H̃3,∧2), (H̃4,∧3), (H̃5,∧3), (H̃6,∧3), (H̃7,∧3)} is FHSts.

Let the FHSs (G̃1,∧3) over the universe N be defined as

(G̃1,∧3) =

⟨(c2, d1), { n1

0.7 ,
n2

0.8}⟩,
⟨(c1, d2), { n1

0.5 ,
n2

0.3}⟩,
⟨(c2, d2), { n1

0.6 ,
n2

0.5}⟩


σ = {0̃(N,Q), 1̃(N,Q), (G̃1,∧3)} is FHSts.

Let h = (ω, ν) : (M, L) → (N,M) be a FHS mapping as follows:

ω(m1) = n2, ω(m2) = n1,
ν(a1, b1) = (c2, d1), ν(a2, b1) = (c1, d2), ν(a1, b2) = (c2, d2)

h−1(G̃1,∧3) = (H̃8,∧3)

h is FHSPCts but not FHSCts because (G̃1,∧3) is FHSos in N but h−1(G̃1,∧3) = (H̃8,∧3) is a
FHSPos but not FHSos.

Example 3.8. Let M = {m1,m2} and N = {n1, n2} be the FHS initial universes and the attributes be
L = Q1 ×Q2 and M = Q′

1 ×Q′
2 respectively. The attributes are given as:

Q1 = {a1, a2, a3}, Q2 = {b1, b2}
Q′

1 = {c1, c2, c3}, Q′
2 = {d1, d2}.

Let (M, L), (N,M) be the classes of FHS sets. Let the FHSs’s (H̃1,∧1), (H̃2,∧2), (H̃3,∧2), (H̃4,∧3),
(H̃5,∧3), (H̃6,∧3), (H̃7,∧3) over the universe M be

(H̃1,∧1) =

{
⟨(a1, b1), {m1

0.8 ,
m2

0.6}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩

}

(H̃2,∧2) =

{
⟨(a1, b1), {m1

0.2 ,
m2

0.3}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.4}⟩

}

(H̃3,∧2) =

{
⟨(a1, b1), {m1

0.8 ,
m2

0.7}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.6}⟩

}

(H̃4,∧3) =

⟨(a1, b1), {m1

0.8 ,
m2

0.6}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.4}⟩


(H̃5,∧3) =

⟨(a1, b1), {m1

0.2 ,
m2

0.3}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.4}⟩


(H̃6,∧3) =

⟨(a1, b1), {m1

0.8 ,
m2

0.7}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.6}⟩


(H̃7,∧3) =

⟨(a1, b1), {m1

0.8 ,
m2

0.6}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.6}⟩


(H̃8,∧3) =

⟨(a1, b1), {m1

0.2 ,
m2

0.3}⟩,
⟨(a2, b1), {m1

0.3 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.4}⟩
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τ = {0̃(M,Q), 1̃(M,Q), (H̃1,∧1), (H̃2,∧2), (H̃3,∧2), (H̃4,∧3), (H̃5,∧3), (H̃6,∧3), (H̃7,∧3)} is FHSts.

Let the FHSs (G̃1,∧1) over the universe N be defined as

(G̃1,∧3) =

⟨(c2, d1), { n1

0.3 ,
n2

0.2}⟩,
⟨(c1, d2), { n1

0.5 ,
n2

0.3}⟩,
⟨(c2, d2), { n1

0.4 ,
n2

0.5}⟩


σ = {0̃(N,Q), 1̃(N,Q), (G̃1,∧3)} is FHSts.

Let h = (ω, ν) : (M, L) → (N,M) be a FHS mapping as follows:

ω(m1) = n2, ω(m2) = n1,
ν(a1, b1) = (c2, d1), ν(a2, b1) = (c1, d2), ν(a1, b2) = (c2, d2)

h−1(G̃1,∧3) = (H̃8,∧3)

h is FHSθPCts but not FHSSCts because (G̃1,∧3) is FHSos in N but h−1(G̃1,∧3) = (H̃8,∧3) is a
FHSθPos but not FHSSos.

Example 3.9. Let M = {m1,m2} and N = {n1, n2} be the FHS initial universes and the attributes be
L = Q1 ×Q2 and M = Q′

1 ×Q′
2 respectively. The attributes are given as:

Q1 = {a1, a2, a3}, Q2 = {b1, b2}
Q′

1 = {c1, c2, c3}, Q′
2 = {d1, d2}.

Let (M, L), (N,M) be the classes of FHS sets. Let the FHSs’s (H̃1,∧1), (H̃2,∧2), (H̃3,∧2), (H̃4,∧3),
(H̃5,∧3), (H̃6,∧3), (H̃7,∧3) over the universe M be

(H̃1,∧1) =

{
⟨(a1, b1), {m1

0.8 ,
m2

0.6}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩

}

(H̃2,∧2) =

{
⟨(a1, b1), {m1

0.2 ,
m2

0.3}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.4}⟩

}

(H̃3,∧2) =

{
⟨(a1, b1), {m1

0.8 ,
m2

0.7}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.6}⟩

}

(H̃4,∧3) =

⟨(a1, b1), {m1

0.8 ,
m2

0.6}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.4}⟩


(H̃5,∧3) =

⟨(a1, b1), {m1

0.2 ,
m2

0.3}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.4}⟩


(H̃6,∧3) =

⟨(a1, b1), {m1

0.8 ,
m2

0.7}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.6}⟩


(H̃7,∧3) =

⟨(a1, b1), {m1

0.8 ,
m2

0.6}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.6}⟩


(H̃8,∧3) =

⟨(a1, b1), {m1

0.2 ,
m2

0.4}⟩,
⟨(a2, b1), {m1

0.3 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.4}⟩


DOI: https://doi.org/10.54216/IJNS.260118 216



International Journal of Neutrosophic Science (IJNS) Vol. 26, No. 01, PP. 206-222, 2025

τ = {0̃(M,Q), 1̃(M,Q), (H̃1,∧1), (H̃2,∧2), (H̃3,∧2), (H̃4,∧3), (H̃5,∧3), (H̃6,∧3), (H̃7,∧3)} is FHSts.

Let the FHSs (G̃1,∧3) over the universe N be defined as

(G̃1,∧3) =

⟨(c2, d1), { n1

0.4 ,
n2

0.2}⟩,
⟨(c1, d2), { n1

0.5 ,
n2

0.3}⟩,
⟨(c2, d2), { n1

0.4 ,
n2

0.5}⟩


σ = {0̃(N,Q), 1̃(N,Q), (G̃1,∧3)} is FHSts.

Let h = (ω, ν) : (M, L) → (N,M) be a FHS mapping as follows:

ω(m1) = n2, ω(m2) = n1,
ν(a1, b1) = (c2, d1), ν(a2, b1) = (c1, d2), ν(a1, b2) = (c2, d2)

h−1(G̃1,∧3) = (H̃8,∧3)

h is FHSθPCts but not FHSPCts because (G̃1,∧3) is FHSos in N but h−1(G̃1,∧3) = (H̃8,∧3) is a
FHSθPos but not FHSPos.

Remark 3.10. From the results discussed above, the following diagram is obtained.

FHSθCts

@
@
@R

�
�

�	

FHSθSCts FHSCts

? ?

FHSSCts FHSPCts

FHSθPCts

@
@
@R

�
�

�	

Theorem 3.11. A map h : (M, L, τ) → (N,M, σ) is FHSθCts iff the inverse image of each FHScs in N is
FHSθcs in M.

Proof. Let (G̃,∧) be a FHScs in N. This implies that (G̃,∧)c is FHSos in N. Since h is FHSθCts,
h−1((G̃,∧)c) is FHSθos in M. Since h−1((G̃,∧)c) = (h−1(G̃,∧))c, h−1(G̃,∧) is a FHSθcs in M.

Conversely, let (G̃,∧) be a FHSos in N. Then (G̃,∧)c is a FHScs in N. By hypothesis, h−1((G̃,∧)c) is
FHSθcs in M. Since,h−1((G̃,∧)c) = (h−1(G̃,∧))c, (h−1(G̃,∧))c is FHSθcs in M. Therefore, (h−1(G̃,∧))
is a FHSθos in M. Hence, h is FHSθCts.
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Theorem 3.12. Let h : (M, L, τ) → (N,M, σ) be a FHSθCts map and g : (N,M, σ) → (P,N, ρ) be a
FHSCts, then g ◦ h : (M, L, τ) → (P,N, ρ) is a FHSθCts.

Proof. Let (K̃,∧) be a FHSos in P . Then g−1(K̃,∧) is a FHSos in N, by hypothesis. Since h is a
FHSθCts map h−1(g−1(K̃,∧)) is a FHSθos in M. Hence g ◦ h is a FHSθCts map.

Theorem 3.13. Let h : (M, L, τ) → (N,M, σ) be a FHSθCts map. Then the following conditions are hold:

(i) h(FHSθcl(H̃,∧)) ≤ FHScl(h(H̃,∧)), for all FHScs(H̃,∧) in M.

(ii) FHSθcl(h−1(G̃,∧)) ≤ h−1(FHScl(G̃,∧)), for all FHScs(G̃,∧) in N.

Proof. (i) As FHSθcl(h(H̃,∧)) is a FHSθcs in N and h is FHSθCts , we have h−1(FHSθcl(h(H̃,∧)))
is a FHSθcs in M. Now, as (H̃,∧) ≤ h−1(FHScl(h(H̃,∧))), FHScl(H̃,∧) ≤ h−1(FHScl(h(H̃,∧))).
Therefore, h(FHSθcl(H̃,∧)) ≤ FHScl(h(H̃,∧)).

(ii) By replacing (H̃,∧) with (G̃,∧) in (i), we get h(FHSθcl(h−1(G̃,∧))) ≤ FHScl(h(h−1(G̃,∧))) ≤
FHScl(G̃,∧). Hence, FHSθcl(h−1(G̃,∧)) ≤ h−1(FHScl(G̃,∧)).

Remark 3.14. If h is FHSθCts then,

(i) h(FHSθcl(H̃,∧)) need not be equal to FHScl(h(H̃,∧)) where (H̃,∧) ∈ M.

(ii) FHSθcl(h−1(G̃,∧)) need not be equal to h−1(FHScl(G̃,∧)) where (G̃,∧) ∈ N.

Example 3.15. Let M = {m1,m2} and N = {n1, n2} be the FHS initial universes and the attributes be
L = Q1 ×Q2 and M = Q′

1 ×Q′
2 respectively. The attributes are given as:

Q1 = {a1, a2, a3}, Q2 = {b1, b2}
Q′

1 = {c1, c2, c3}, Q′
2 = {d1, d2}.

Let (M, L), (N,M) be the classes of FHS sets. Let the FHSs’s (H̃1,∧1), (H̃2,∧1), (H̃3,∧2) over the
universe M be

(H̃1,∧1) =

{
⟨(a1, b1), {m1

0.2 ,
m2

0.3}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.4}⟩

}

(H̃2,∧1) =

{
⟨(a1, b1), {m1

0.8 ,
m2

0.7}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.6}⟩

}

(H̃3,∧2) =

⟨(a1, b1), {m1

0.8 ,
m2

0.6}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩,
⟨(a1, b2), {m1

0.5 ,
m2

0.4}⟩


τ = {0̃(M,Q), 1̃(M,Q), (H̃1,∧1), (H̃2,∧1)} is FHSts.

Let the FHSs’s (G̃1,∧1), (G̃2,∧1), (G̃3,∧2) over the universe N be

(G̃1,∧1) =

{
⟨(c2, d1), { n1

0.3 ,
n2

0.2}⟩,
⟨(c2, d2), { n1

0.4 ,
n2

0.5}⟩

}

(G̃2,∧1) =

{
⟨(c2, d1), { n1

0.7 ,
n2

0.8}⟩,
⟨(c2, d2), { n1

0.6 ,
n2

0.5}⟩

}

(G̃3,∧2) =

⟨(c2, d1), { n1

0.6 ,
n2

0.8}⟩,
⟨(c1, d2), { n1

0.5 ,
n2

0.7}⟩,
⟨(c2, d2), { n1

0.4 ,
n2

0.5}⟩
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σ = {0̃(N,Q), 1̃(N,Q), (G̃1,∧1)} is FHSts.

Let h = (ω, ν) : (M, L) → (N,M) be a FHS mapping as follows:

ω(m1) = n2, ω(m2) = n1,
ν(a1, b1) = (c2, d1), ν(a2, b1) = (c1, d2), ν(a1, b2) = (c2, d2)

h−1(G̃1,∧1) = (H̃1,∧1), h−1(G̃2,∧1) = (H̃2,∧1), h−1(G̃3,∧2) = (H̃3,∧2)

Then h is FHSθCts.

(i) h(FHSθcl(H̃3,∧2)) = (G̃1,∧1)
c, but FHScl(h(H̃3,∧2)) = (G̃1,∧1)

c.
Hence h(FHSθcl(H̃3,∧2)) = FHScl(h(H̃3,∧2)).

(ii) FHSθcl(h−1(G̃3,∧2)) = (H̃1,∧1)
c , but h−1(FHScl(G̃3,∧2)) == (H̃1,∧1)

c.
Hence FHScl(h−1(G̃3,∧2)) = h−1(FHScl(G̃3,∧2)).

Theorem 3.16. h is FHSθCts iff h−1(FHSint(G̃,∧)) ≤ FHSθint(h−1(G̃,∧)) for all FHScs (G̃,∧) in
N.

Proof. Let h be a FHSθCts and (G̃,∧) ∈ N. FHSint(G̃,∧) is FHSos in N and hence, h−1(FHSint(G̃,∧))
is a FHSθos in M. Therefore, FHSθint(h−1(FHSint(G̃,∧))) = h−1(FHSint(G̃,∧)). Also, FHSint(G̃,∧) ≤
(G̃,∧) implies that h−1(FHSint(G̃,∧)) ≤ h−1(G̃,∧). Therefore,
FHSθint(h−1(FHSint(G̃,∧))) ≤ FHSθint(h−1(G̃,∧)). That is, h−1(FHSint(G̃,∧)) ≤ FHSθint(h−1(G̃,∧)).

Conversely, let h−1(FHSint(G̃,∧)) ≤ FHSθint(h−1(G̃,∧)) for all subset (G̃,∧) of N. If (G̃,∧) is
FHSos in N, then FHSint(G̃,∧) = (G̃,∧). By assumption, h−1(FHSint(G̃,∧)) ≤ FHSθint(h−1(G̃,∧)).
Thus (h−1(G̃,∧) ≤ FHSθint(h−1(G̃,∧)). But FHSθint(h−1(G̃,∧)) = h−1(G̃,∧). Therefore,
FHSθint(h−1(G̃,∧)) = h−1(G̃,∧). That is, h−1(G̃,∧) is FHSθos in M, for all FHSos(G̃,∧) in N.
Therefore, h is FHSθCts on M.

Remark 3.17. If h is FHSθCts, then FHSθint(h−1(G̃,∧)) need not be equal to h−1(FHSint(G̃,∧))
where (G̃,∧) ∈ N.

Example 3.18. Let M = {m1,m2} and N = {n1, n2} be the FHS initial universes and the attributes be
L = Q1 ×Q2 and M = Q′

1 ×Q′
2 respectively. The attributes are given as:

Q1 = {a1, a2, a3}, Q2 = {b1, b2}
Q′

1 = {c1, c2, c3}, Q′
2 = {d1, d2}.

Let (M, L), (N,M) be the classes of FHS sets. Let the FHSs’s (H̃1,∧1) and (H̃2,∧1) over the universe M
be

(H̃1,∧1) =

{
⟨(a1, b1), {m1

0.8 ,
m2

0.7}⟩,
⟨(a2, b1), {m1

0.7 ,
m2

0.5}⟩

}

(H̃2,∧1) =

{
⟨(a1, b1), {m1

0.2 ,
m2

0.3}⟩,
⟨(a2, b1), {m1

0.3 ,
m2

0.5}⟩

}

τ = {0̃(M,Q), 1̃(M,Q), (H̃1,∧1), (H̃2,∧1)} is FHSts.

Let the FHSs′s (G̃1,∧1) and (G̃2,∧1) over the universe N be defined as
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(G̃1,∧1) =

{
⟨(c2, d1), { n1

0.7 ,
n2

0.8}⟩,
⟨(c1, d2), { n1

0.5 ,
n2

0.7}⟩

}

(G̃2,∧1) =

{
⟨(c2, d1), { n1

0.3 ,
n2

0.2}⟩,
⟨(c1, d2), { n1

0.5 ,
n2

0.3}⟩

}

σ = {0̃(N,Q), 1̃(N,Q), (G̃1,∧1)} is FHSts.

Let h = (ω, ν) : (M, L) → (N,M) be a FHS mapping as follows:

ω(m1) = n2, ω(m2) = n1,
ν(a1, b1) = (c2, d1), ν(a2, b1) = (c2, d1), ν(a1, b2) = (c1, d2), ν(a2, b2) = (c2, d2)

h−1(G̃1,∧1) = (H̃1,∧1), h
−1(G̃2,∧1) = (H̃2,∧1)

Then h is FHSθCts. then FHSθint(h−1(G̃2,∧1)) = (H̃2,∧1)

h−1(FHSint(G̃2,∧1)) = 0̃(M,Q) where (G̃2,∧1) ∈ N.

4 Fuzzy Hypersoft θ Irresolute Maps

Fuzzy hypersoft θ irresolute maps are introduced and their relevent properties are discussed in this section .

Definition 4.1. A map h : (M, L, τ) → (N,M, σ) is called a FHSθ irresolute (in short, FHSθIrr) map if
h−1(G̃,∧) is a FHSθos in (M, L, τ) for every FHSθos (G̃,∧) of (N,M, σ).

Theorem 4.2. Let h : (M, L, τ) → (N,M, σ) be a FHSθIrr map. Then h is a FHSθCts map. But not
conversely.

Proof. Let h be a FHSθIrr map. Let (G̃,∧) be any FHSos on N. Since every FHSos is a FHSθos, (G̃,∧)
in N. By hypothesis, h−1(G̃,∧) is a FHSθos in M. Hence, h is a FHSθCts map.

Example 4.3. Let M = {m1,m2} and N = {n1, n2} be the FHS initial universes and the attributes be
L = Q1 ×Q2 and M = Q′

1 ×Q′
2 respectively. The attributes are given as:

Q1 = {a1, a2, a3}, Q2 = {b1, b2}
Q′

1 = {c1, c2, c3}, Q′
2 = {d1, d2}.

Let (M, L), (N,M) be the classes of FHS sets. Let the FHSs’s (H̃1,∧1), (H̃2,∧1) over the universe M be

(H̃1,∧1) =

{
⟨(a1, b1), {m1

0.2 ,
m2

0.3}⟩,
⟨(a2, b1), {m1

0.5 ,
m2

0.4}⟩

}

(H̃2,∧1) =

{
⟨(a1, b1), {m1

0.8 ,
m2

0.7}⟩,
⟨(a2, b1), {m1

0.5 ,
m2

0.6}⟩

}

τ = {0̃(M,Q), 1̃(M,Q), (H̃1,∧1)} is FHSts.

Let the FHSs′s (G̃1,∧1), (G̃2,∧1) over the universe N be
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(G̃1,∧1) =

{
⟨(c2, d1), { n1

0.3 ,
n2

0.2}⟩,
⟨(c1, d2), { n1

0.4 ,
n2

0.5}⟩

}

(G̃2,∧1) =

{
⟨(c2, d1), { n1

0.7 ,
n2

0.8}⟩,
⟨(c1, d2), { n1

0.6 ,
n2

0.5}⟩

}

σ = {0̃(N,Q), 1̃(N,Q), (G̃1,∧1), (G̃2,∧1)} is FHSts.

Let h = (ω, ν) : (M, L) → (N,M) be a FHS mapping as follows:

ω(m1) = n2, ω(m2) = n1,
ν(a1, b1) = (c2, d1), ν(a2, b1) = (c1, d2), ν(a1, b2) = (c2, d2)

h−1(G̃1,∧1) = (H̃1,∧1), h
−1(G̃2,∧1) = (H̃2,∧1),

∴ h = (ω, ν) : (M, L) → (N,M) is FHSθCts but not FHSθIrr, because the set (G̃2,∧1) is a FHSθos in
N but h−1(G̃2,∧1) = (H̃2,∧1) is not FHSθos in M

Theorem 4.4. Let h : (M, L, τ) → (N,M, σ) and g : (N,M, σ) → (P,N, ρ) be FHSIrr maps, then
g ◦ h : (M, L, τ) → (P,N, ρ) is a FHSIrr map.

Proof. Let (K̃,∧) be a FHSθos in P . Then g−1(K̃,∧) is a FHSθos in N. Since h is a FHSθIrr map,
h−1(g−1(K̃,∧)) is a FHSθos in M. Hence g ◦ h FHSθIrr map.

Theorem 4.5. Let h : (M, L, τ) → (N,M, σ) be a FHSθIrr map and g : (N,M, σ) → (P,N, ρ) is a
FHSθCts map, then g ◦ h : (M, L, τ) → (P,N, ρ) is a FHSθCts map.

Proof. Let (K̃,∧) be a FHSos in P . Then g−1(K̃,∧) is a FHSθos in N. Since, h is a FHSθIrr map,
h−1(g−1(K̃,∧)) is a FHSθos in M. Hence, g ◦ h is a FHSθCts map.

5 Conclusions

In this paper, FHSθCts, FHSθSCts and FHSθPCts maps are defined using FHSθos and their proper-
ties are analysed with examples. Then FHSCts maps are compared with FHSθCts maps. In addition, these
maps are extended to FHSθIrr maps and its relevant properties are discussed. In future, these findings can
be extended to FHSθ open mapping, FHSθ closed mapping and FHS homeomorphic functions.
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