International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 26 , Issue 1 , PP: 01-14, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Fixed point results in ωt-distance mappings for Geraghty type contractions

Ammar Al-tawil 1 * , Ayman. A Hazaymeh 2 , Anwar Bataihah 3

  • 1 Department of Mathematics, Faculty of Science, Jadara University, Irbid, Jordan - (ammartaweel82@gmail.com)
  • 2 Department of Mathematics, Faculty of Science, Jadara University, Irbid, Jordan - (aymanha@jadara.edu.jo)
  • 3 Department of Mathematics, Faculty of Science, Jadara University, Irbid, Jordan - (a.bataihah@jadara.edu.jo)
  • Doi: https://doi.org/10.54216/IJNS.260101

    Received: October 09, 2024 Revised: January 01, 2025 Accepted: February 12, 2025
    Abstract

    In this study, we establish fixed point theorems for Pωt-contractions within b-metric spaces by utilizing ωtdistance mappings. Subsequently, we demonstrate fixed point results pertaining to nonlinear contraction conditions of the Geraghty type, again employing ωt-distance mappings in the context of a complete b-metric space. Additionally, we bolster our findings with appropriate examples to illustrate the applicability of our results.

    Keywords :

    Fixed point , b-metric space , P&omega , t-contraction , Nonlinear contraction

    References

    [1] Banach, S.(1922). Sur les op´erations dans les ensembles abstraits et leur application aux ´equations int´egrales. fund. math, 3, 133-181.

    [2] S. Czerwik, Contraction mappings in b-metric spaces, Acta mathematica et informatica universitatis ostraviensis, 1(1) (1993), 5-11.

    [3] Hussain, N.; Saadati, R.; Agrawal, R.P. On the topology and wt-distance on metric type spaces. Fixed Point Theory Appl. 2014, 2014, 88.

    [4] Kada, O, Suzuki, T, Takahashi, W: Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Jpn. 44(2), 381-391 (1996)

    [5] M. S. Khan, M. Swaleh, S. Sessa, fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc., 30 (1984), 1–9. 1.9

    [6] M. A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604–608.

    [7] Bakhtin, IA0748 , The contraction mapping principle in quasimetric spaces Functional analysis, 26:37, 1989.

    [8] Karapınar, E., & fulga, A. (2023). Discussions on Proinov-Cb-Contraction Mapping on-Metric Space.Journal of function Spaces, 2023(9), 1-10.

    [9] Karapınar, E., Romaguera, S., & Tirado, P. (2022). Characterizations of quasi-metric and G-metric completeness involving ω-distances and fixed points. Demonstratio Mathematica, 55(1), 939-951.

    [10] Ismail, J. N., Rodzi, Z., Hashim, H., Sulaiman, N. H., Al-Sharqi, F., Al-Quran, A., & Ahmad, A. G. Enhancing Decision Accuracy in DEMATEL using Bonferroni Mean Aggregation under Pythagorean Neutrosophic Environment. Journal of Fuzzy Extension & Applications (JFEA), 4(4), 281 - 298, 2023.

    [11] Aydi, H., Karapinar, E., & Postolache, M. (2012). Tripled coincidence point theorems for weak Φ-contractions in partially ordered metric spaces, Fixed Point Theory Appl. 2012, 44, https://doi.org/10.1186/1687-1812-2012-44.

    [12] Jleli, M., & Samet, B. (2014). A new generalization of the Banach contraction principle, Journal of inequalities and applications, 2014, 38, https://doi.org/10.1186/1029-242X-2014-38.

    [13] Shatanawi, W., Qawasmeh, T., Bataihah A., & Tallafha, A. (2021). New contractions and some fixed point results with application based on extended quasi b-metric spaces, U.P.B. Sci. Bull., Series A, Vol. 83, Iss. 2 (2021) 1223-7027.

    [14] Al-Quran A, Al-Sharqi F, Rahman AU, Rodzi ZM. The q-rung orthopair fuzzy-valued neutrosophic sets: Axiomatic properties, aggregation operators and applications. AIMS Mathematics. 2024;9(2):5038-5070.

    [15] Shatanawi, W., Bataihah, A. (2021). Remarks on G-Metric Spaces and Related Fixed Point Theorems, Thai Journal of Mathematics, 19(2), 445–455. https://thaijmath2.in.cmu.ac.th/index.php/thaijmath/article/view/1168

    [16] Ayman Hazaymeh and Anwar Bataihah, 2024. Results on fixed points in neutrosophic metric spaces through the use of simulation functions, Journal of Mathematical Analysis, 15(6), 47–57.

    [17] Ayman. A Hazaymeh, and Anwar Bataihah. (2024). Neutrosophic fuzzy metric spaces and fixed points for contractions of nonlinear type. Neutrosophic Sets and Systems, 77, 96–112. https://fs.unm.edu/nss8/index.php/111/article/view/5270

    [18] F. Al-Sharqi, A. Al-Quran and Z. M. Rodzi, Multi-Attribute Group Decision-Making Based on Aggregation Operator and Score Function of Bipolar Neutrosophic Hypersoft Environment, Neutrosophic Sets and Systems, 61(1), 465-492, 2023.

    [19] Bakhtin, I.A.. (1989). The contraction mapping principle in almost metric spaces. funct. Anal., Gos. Ped. Inst., Unianowsk, 1989, 30, 26–37.

    [20] Al-Qudah, Y., Alhazaymeh, K., Hassan, N., ... Almousa, M., Alaroud, M. Transitive Closure of Vague Soft Set Relations and its Operators. International Journal of Fuzzy Logic and Intelligent Systems, 2022, 22(1), pp. 59–68 DOI:10.5391/IJFIS.2022.22.1.59

    [21] A. B. Smith, C. D. Johnson, and E. F. Williams, ”A Novel Approach to Fuzzy Logic in Classification Systems,”Journal of Computational and Theoretical Nanoscience”, vol. 18, no. 3, pp. 123-134, 2021. DOI: 10.1166/jctn.2021.01234.

    [22] M. R. Khan, L. A. Patel, and S. T. Gupta, ”Mathematical Modeling of Nanostructures: A Comprehensive Analysis,”Applied Mathematics and Computation”, vol. 400, pp. 126-139, 2022. DOI: 10.1016/j.amc.2021.126789.

    [23] Al-Qudah, Y., Hassan, N. Fuzzy parameterized complex multi-fuzzy soft expert sets. AIP Conference Proceedings, 2019, 2111, 020022 DOI:10.1063/1.5111229

    [24] FALLATAH, A., MASSA’DEH, M. O., & ALKOURI, A. U. (2022). NORMAL AND COSETS OF (γ, ϑ)-FUZZY HX-SUBGROUPS. Journal of applied mathematics & informatics, 40(3-4), 719-727.

    [25] Alqaraleh, S. M., Alkouri, Abd Ulazeez, M. J. S., Massa’deh, M. O., Talafha, A. G., & Bataihah, A. (2022). Bipolar complex fuzzy soft sets and their application. International Journal of Fuzzy System Applications (IJFSA), 11(1), 1-23.

    Cite This Article As :
    Al-tawil, Ammar. , A, Ayman.. , Bataihah, Anwar. Fixed point results in ωt-distance mappings for Geraghty type contractions. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 01-14. DOI: https://doi.org/10.54216/IJNS.260101
    Al-tawil, A. A, A. Bataihah, A. (2025). Fixed point results in ωt-distance mappings for Geraghty type contractions. International Journal of Neutrosophic Science, (), 01-14. DOI: https://doi.org/10.54216/IJNS.260101
    Al-tawil, Ammar. A, Ayman.. Bataihah, Anwar. Fixed point results in ωt-distance mappings for Geraghty type contractions. International Journal of Neutrosophic Science , no. (2025): 01-14. DOI: https://doi.org/10.54216/IJNS.260101
    Al-tawil, A. , A, A. , Bataihah, A. (2025) . Fixed point results in ωt-distance mappings for Geraghty type contractions. International Journal of Neutrosophic Science , () , 01-14 . DOI: https://doi.org/10.54216/IJNS.260101
    Al-tawil A. , A A. , Bataihah A. [2025]. Fixed point results in ωt-distance mappings for Geraghty type contractions. International Journal of Neutrosophic Science. (): 01-14. DOI: https://doi.org/10.54216/IJNS.260101
    Al-tawil, A. A, A. Bataihah, A. "Fixed point results in ωt-distance mappings for Geraghty type contractions," International Journal of Neutrosophic Science, vol. , no. , pp. 01-14, 2025. DOI: https://doi.org/10.54216/IJNS.260101