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Abstract

In this study, we establish fixed point theorems for Pωt-contractions within b-metric spaces by utilizing ωt-
distance mappings. Subsequently, we demonstrate fixed point results pertaining to nonlinear contraction con-
ditions of the Geraghty type, again employing ωt-distance mappings in the context of a complete b-metric
space. Additionally, we bolster our findings with appropriate examples to illustrate the applicability of our
results.
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1 Introduction and Preliminary

In mathematics, a fixed-point theorem is a result saying that a self-map function f on a non-empty set 0 will
have at least one fixed point in 0 ( i.e., there is some ξ ∈ 0 such that fξ = ξ ). This theorem holds true
under certain conditions on f , which can be expressed in general terms. In a variety of mathematical contexts,
the presence of a solution is often synonymous with the existence of a fixed point for an appropriate mapping.
Consequently, the identification of fixed points carries significant ramifications across multiple domains within
mathematics and other scientific disciplines. This theory represents a profound integration of analysis (both
pure and applied) topology, and geometry. In the past five decades, the fixed point theory has emerged as a
highly influential and essential instrument in the exploration of nonlinear analysis.

The Banach fixed-point theorem,1 known also as the Banach contraction principle, plays a crucial role in the
field of mathematics, particularly in the study of metric spaces. This theorem guarantees the presence and
uniqueness of fixed points for certain self-maps in metric spaces. Moreover, it presents a methodical approach
to determining these fixed points. Essentially, the Banach fixed-point theorem can be seen as a generalized
version of Picard’s method of successive approximations. It is named after Stefan Banach (1892–1945), who
first introduced this theorem in 1922.

Numerous mathematicians have subsequently explored a range of generalizations of Banach’s theorem across
different contexts see for example.?, 8–12, 14–19 A notable example is the concept of b-metric spaces, which was
first introduced by Bakhtin7and later refined and named by Czerwik.2 This framework has been employed
to examine various fixed point theorems. Additionally, Hussain et al3 introduced the idea of ωt-distance
mappings, utilizing this concept to investigate several fixed point results.

Definition 1.1. 3 Let 0 denote a set. Define a function d : 0 × 0 → [0,∞) that fulfills the following
conditions:

1. d(ξ, ζ) = 0 if and only if ξ is equal to ζ;
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2. d(ξ, ζ) = d(ζ, ξ) for all ξ, ζ ∈ 0;

3. There exists a constant s ≥ 1 such that for any points ξ, ζ, ρ ∈ 0, the inequality d(ξ, ζ) ≤ s(d(ξ, ρ) +
d(ρ, ζ)) holds.

The triplet (0, d, s) is referred to as a b-metric space.

It should be noted that in the case where s equals 1, the triplet (0, d, s) forms a metric space. This implies that
the properties of a metric space hold true when s is equal to 1.

Definition 1.2. 3

Let (0, d, s) represent a b-metric space.

1. A sequence (ξn) is said to converge to an element ξ ∈ 0 if and only if the limit lim
n→∞

d(ξn, ξ) = 0 holds
true.

2. The sequence (ξn) is classified as Cauchy if and only if the limit lim
n,m→∞

d(ξn, ξm) = 0 is satisfied.

3. The space (0, d, s) is defined as complete if and only if every Cauchy sequence within 0 converges.

Kada et al.4 presented the notion of ω-distance within a metric space in 1996 and established several fixed
point theorems. In the current study, we define the concept of ωt-distance and articulate a lemma that will be
utilized in the principal sections of this research.

Definition 1.3. 3 Let (0, d, s) represent a b-metric space where the constant s satisfies s ≥ 1. A function
p : 0× 0 → [0,∞) is designated as a ωt on 0 if it fulfills the following conditions:

(a) For any points ξ, ζ, ρ ∈ 0, the inequality p(ξ, ρ) ≤ s(p(ξ, ζ) + p(ζ, ρ)) holds;

(b) For every ξ ∈ 0, the mapping p(ξ, ·) : 0 → [0,∞) is s-lower semi-continuous;

(c) For any given ε > 0, there exists a δ > 0 such that if p(ρ, ξ) ≤ δ and p(ρ, ζ) ≤ δ, then it follows that
d(ξ, ζ) ≤ ε.

A real-valued function f defined on a b-metric space 0 is considered to be s-lower semi-continuous at a point
ξ0 in 0 if one of the following conditions holds: either lim inf

ξn→ξ0
f(ξn) = ∞ or f(ξ0) ≤ lim inf

ξn→ξ0
sf(ξn). This is

applicable for sequences ξn that belong to 0 for every n ∈ N and converge to ξ0.

Next, we recall some examples on ωt mappings.

Example 1.4. 3 Let (0, d, s) represent a b-metric space. In this context, the function p = d serves as an
ωt-distance on the set 0.

Proof. The statements (a) and (b) are self-evident. To demonstrate (c), let us consider any ϵ > 0 and set
δ = ϵ

2s . It follows that if p(ξ, ρ) ≤ δ and p(ρ, ζ) ≤ δ, then it can be concluded that d(ξ, ζ) ≤ ϵ.

Example 1.5. 3 Let 0 = R and define the distance function as d(ξ, ζ) = (ξ − ζ)2. The function p : 0×0 →
[0,∞), given by p(ξ, ζ) = |ξ|2 + |ζ|2 for all ξ, ζ ∈ 0, serves as an ωt-distance on the set 0.

Proof. The assertions (a) and (b) are self-evident. To demonstrate (c), let us consider any ϵ > 0 and set δ = ϵ
4 .

Consequently, we obtain the following inequality:

d(ξ, ζ) = (ξ − ζ)2 ≤ 2|ξ|2 + 2|ζ|2 = 2p(ρ, ξ) + 2p(ρ, ζ) = 2δ + 2δ = ϵ.
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Example 1.6. 3 Let 0 = R and define the distance function d(ξ, ζ) = (ξ − ζ)2. The function p : 0 × 0 →
[0,∞), given by p(ξ, ζ) = |ζ|2 for all ξ, ζ ∈ 0, qualifies as a ωt-distance on 0.

Proof. The assertions (a) and (b) are self-evident. To demonstrate (c), let us consider any ϵ > 0 and set δ = ϵ
4 .

Consequently, we obtain the following inequality:

d(ξ, ζ) = (ξ − ζ)2 ≤ 2|ξ|2 + 2|ζ|2 = 2p(ρ, ξ) + 2p(ρ, ζ) = 2δ + 2δ = ϵ.

Lemma 1.7. 3 Let (0, d, s) represent a b-metric space characterized by a constant s ≥ 1, and let p denote a
ωt-distance defined on 0. Consider sequences (ξn) and (ζn) within 0, along with sequences (αn) and (βn)
in the interval [0,∞) that converge to zero, and let ξ, ζ, ρ be elements of 0. The following statements are
established:

1. If for every natural number n, the conditions p(ξn, ζ) ≤ αn and p(ξn, ρ) ≤ βn hold, then it follows that
ζ = ρ. Specifically, if p(ξ, ζ) = 0 and p(ξ, ρ) = 0, it can be concluded that ζ = ρ.

2. If the inequalities p(ξn, ζn) ≤ αn and p(ξn, ρ) ≤ βn are satisfied for all natural numbers n, then the
distance d(ζn, ρ) approaches zero.

3. If the condition p(ξn, ξm) ≤ αn is satisfied for all natural numbers n and m with m > n, then the
sequence (ξn) is identified as a Cauchy sequence.

4. If the inequality p(ζ, ξn) ≤ αn holds for every natural number n, then the sequence (ξn) is also classi-
fied as a Cauchy sequence.

Proof. (1) Let ϵ > 0 be given. Since αn → 0, then ∀ δ > 0 ∃ N0 ∈ N such that αn ≤ δ, ∀n ≥ N0.

Similarly, since βn → 0, then ∀ δ > 0 ∃ N1 ∈ N such that βn ≤ δ, ∀n ≥ N1.

If N = max{N0, N1}, then:

αn ≤ δ, and βn ≤ δ for n ≥ N

so,

p(ξn, ζ) ≤ αn < δ and p(ξn, ρ) ≤ βn < δ for n ≥ N

Thus, we have

d(ζ, ρ) < ϵ

Hence, d(ζ, ρ) = 0 and so, ζ = ρ.

(2) Let ϵ > 0 be given. Since αn → 0, then ∀ δ > 0 ∃ N0 ∈ N such that αn ≤ δ, ∀n ≥ N0.

Similarly, since βn → 0, then ∀ δ > 0 ∃ N1 ∈ N such that βn ≤ δ, ∀n ≥ N1.

If N = max{N0, N1}, then:

αn ≤ δ, and βn ≤ δ for n ≥ N

so,
p(ξn, ζn) ≤ αn < δ and p(ξn, ρ) ≤ βn < δ for n ≥ N
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⇒ d(ζn, ρ) < ϵ for each ϵ > 0

⇒ d(ζn, ρ) → 0

(3) Let ϵ > 0 be given. Since αn → 0, then ∀ δ > 0 ∃ N0 ∈ N such that αn ≤ δ, ∀n ≥ N0.

Hence, p(ξn, ξm) ≤ αn < δ and p(ξn, ξn+1)αn < δ for m ≥ n ≥ N0.
Thus, by the definition of p, we have

d(ξn+1, ξm) < ϵ for m ≥ n ≥ N.

This implies that (ξn) is a Cauchy sequence.
(4) Let ϵ > 0 be given. Since αn → 0, then ∀ δ > 0 ∃ N0 ∈ N such that αn ≤ δ, ∀n ≥ N0

αn ≤ δ for n ≥ N.

So,
p(ζ, ξn) ≤ αn < δ for n ≥ N0

So,
αm ≤ δ for m ≥ N0.

Then, p(ζ, ξn) ≤ αm < δ for m ≥ N1

If N = max{N0, N1}, then:
d(ζ, ξn) < ϵ for n,m ≥ N.

This implies that (ξn) is a Cauchy sequence.

2 Main Result

Next, we give the definition of Pωt contractions in ωt mappings.

Definition 2.1. Let d : 0 × 0 → [0,∞) be a b-metric on 0, p be a ωt-distance on 0 there exists k ∈ [0, 1)
such that f : 0 → 0 satisfying

p(fξ, fζ) ≤ k [p(ξ, ζ) + |p(ξ, fξ)− p(ζ, fζ)|] (1)

Then f is said to be a Pωt-contraction.

Theorem 2.2. Let (0, d, s) represent a b-metric space characterized by a constant s ≥ 1, and let p denotes a
ωt-distance on 0. Additionally, let f : 0 → 0 be characterized as a Pωt-contraction. We assume that one of
the following conditions is satisfied:

(i) The function f is continuous.

(ii) For every ζ ∈ 0 such that ζ ̸= fζ, it holds that

inf{p(ξ, ζ) + p(ξ, f(ξ)) : ξ ∈ 0} > 0.

Assuming that 2ks
1+k < 1, it follows that f possesses a unique fixed point ρ ∈ 0.
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Proof. Let ξ0 ∈ 0 represent an arbitrary point. We examine the Picard sequence (ξn) characterized by the
relation ξn+1 = f(ξn) for all n ≥ 0. We will now analyze two distinct scenarios:

First, assume that there exists an integer n0 ∈ N for which the condition p(ξn0
, ξn0+1) = 0 holds. In this case,

we claim that p(ξn0+1, ξn0+2) = 0. Indeed, by Condition 1 we have

p(ξn0+1, ξn0+2) = p(fξn0 , fξn0+1)
≤ k[p(ξn0 , ξn0+1) + |p(ξn0 , fξn0)− p(ξn0+1, fξn0+1)|]
= k[p(ξn0

, ξn0+1) + |p(ξn0
, ξn0+1)− p(ξn0+1, ξn0+2)|]

= kp(ξn0+1, ξn0+2).

So, (1− k)p(ξn0+1, ξn0+2) ≤ 0. Hence p(ξn0+1, ξn0+2) = 0. From the triangular inequality, we have

p(ξn0
, ξn0+2) ≤ p(ξn0

, ξn0+1) + p(ξn0+1, ξn0+2) = 0.

Now, we have p(ξn0
, ξn0+1) = 0 and p(ξn0

, ξn0+2) = 0, from Lemma 1.7 (a), we get ξn0+1 = ξn0+2 =
fξn0+1; hence ξn0+1 is a fixed point of f .

Now suppose p(ξn, ξn+1) > 0 for all n ∈ N. Then from 1 we have

p(ξn+1, ξn+2) = p(fξn, fξn+1)
≤ k[p(ξn, ξn+1) + |p(ξn, fξn)− p(ξn+1, fξn+1)|]
= k[p(ξn, ξn+1) + |p(ξn, ξn+1)− p(ξn+1, ξn+2)|].

If p(ξn+1, ξn+2) > p(ξn, ξn+1), then we have p(ξn+1, ξn+2) ≤ kp(ξn+1, ξn+2), which implies that p(ξn+1, ξn+2) =
0 a contradiction.
If p(ξn+1, ξn+2) = p(ξn, ξn+1), then we have p(ξn+1, ξn+2) ≤ kp(ξn, ξn+1) = kp(ξn+1, ξn+2), which
implies that p(ξn+1, ξn+2) = 0, a contradiction.

So, we just have p(ξn+1, ξn+2) < p(ξn, ξn+1) for all n ∈ N. Hence,

p(ξn+1, ξn+2) ≤
2k

1 + k
p(ξn, ξn+1)

for all n ∈ N. Therefore we have

p(ξn+1, ξn+2) ≤ λnp(ξ0, x1),

for all n ∈ N, where λ = 2k
1+k < 1. Furthermore,

lim
n→∞

p(ξn+1, ξn+2) = 0. (2)

Now for any m,n ∈ N with m > n, we have

p(ξn, ξm) ≤ s [p(ξn, ξn+1) + p(ξn+1, ξn+2)]

≤ sp(ξn, ξn+1) + s2p(ξn+1, ξn+2) + s3p(ξn+2, ξn+3) + . . .

≤ sλnp(ξ0, ξ1) + s2λn+1p(ξ0, x1) + s3λn+2p(ξ0, ξ1) + . . .

= sλnp(ξ0, x1)
[
1 + sλ+ (sλ)2 + (sλ)3 + . . .

]
=

sλnp(ξ0, ξ1)

1− sλ

So, we have
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p(ξn, ξm) ≤ sλn

1− sλ
p(ξ0, ξ1) (3)

Now taking limit as n,m → ∞ we get

lim
n,m→∞

p(ξn, ξm) = 0 (4)

and so from Lemma 1.7 (c), (ξn) is a Cauchy sequence. Due to the completeness of 0, there exists ρ ∈ 0 such
that ξn → ρ as n → ∞. Since p is s-lower semicontinuous in the second variable and ξm → ρ as m → ∞,
from 4 we get

p(ξn, ρ) ≤ lim inf
m→∞

s · p(ξn, ξm) ≤ s2
λn

1− sλ
p(ξ0, ξ1) → 0 as n → ∞. (5)

Now, if f is continuous, then ξn+1 = fξn → fρ and so by the uniqueness of the limit we get ρ = fρ.

Finally, assume (ii) holds and ρ ̸= fρ. Then from 2 and 5 we have

0 < inf{p(ξ, ρ) + p(ξ, fξ) : ξ ∈ 0}
≤ inf{p(ξn, ρ) + p(ξn, fξn) : n ∈ N}
= inf{p(ξn, ρ) + p(ξn, ξn+1) : n ∈ N} → 0

as n → ∞, which is a contradiction. Hence ρ = fρ.

To show the uniqueness of the fixed point, first, we have p(ρ, ρ) = 0. Indeed, from Condition 1, we get

p(ρ, ρ) = p(fρ, fρ) ≤ kp(ρ, ρ).

So, (1 − k)p(ρ, ρ) ≤ 0. Hence, p(ρ, ρ) = 0. Now, suppose u is also a fixed point of f . Then from Condition
1 we have

p(ρ, u) = p(fρ, fu) ≤ kp(ρ, u),

which implies p(ρ, u) = 0. Hence from Lemma 1.7 (a) we have u = ρ.

Example 2.3. Let 0 = [0, 1] with the b-metric space d by d(ξ, ζ) = (ξ − ζ)2 . Define f : 0 → 0 by
f(ξ) = 1−ξ3

4−2ξ3 and consider the ωt-distance in 0 as p(ξ, ζ) = 1
4 (ξ − ζ)2. Then we have

p(fξ, fζ) = 1
4

(
1−ξ3

4−2ξ3 − 1−ζ3

4−2ζ3

)2

= 1
4

(ξ3−ζ3)2

(4−2ξ3)2(4−2ζ3)2

≤ 1
4
((ξ−ζ)(ξ2+ξζ+ζ2))2

(4−2ξ3)2(4−2ζ3)2

≤ 9
64 (ξ − ζ)2

= 9
64p(ξ, ζ).

Now,
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p(ξ, ζ) =
1

4
(ξ − ζ)2

p(ξ, fξ) =
1

4

(
ξ − 1− ξ3

4− 2ξ3

)2

=
1

4

(
4ξ − 2ξ4 − 1 + ξ3

4− 2ξ3

)2

≥ 0

p(ζ, fζ) =
1

4

(
ζ − 1− ζ3

4− 2ζ3

)2

=
1

4

(
4ζ − 2ζ4 − 1 + ζ3

4− 2ζ3

)2

≥ 0

for all ξ, ζ ∈ 0. Hence we get

p(fξ, fζ) ≤ 9
64 (ξ − ζ)2

= 9
16

1
4 (ξ − ζ)2

≤ 9
16 [ p(ξ, ζ) + | p(ξ, fξ)− p(ζ, fζ)|]

Clearly, f is continuous. So, for all ξ, ζ ∈ 0, that is, f is a Pωt
-contraction, therefore f has a unique fixed

point.

Example 2.4. Let 0 =
{

1
3n : n ∈ N

}
∪{0} with the b-metric space d by d(ξ, ζ) = (ξ−ζ). Define f : 0 → 0

by f
(

1
3n

)
= 1

3n+1 for n ∈ N and f(0) = 0. This defines a mapping f on 0 such that each element is mapped
to one-third of its current value, and 0 is mapped to itself , and consider the ωt distance in 0 as p(ξ, ζ) = ζ.
Then f is Pωt-contraction.

Proof. Case1: If ξ = 0, ζ = 0 or ξ = 1
3n , ζ = 0, then

0 = p(fξ, fζ) ≤ 1

3
[p(ξ, ζ) + |p(ξ, fx)− p(ζ, fζ)|]

Case2: If ξ = 1
3n , ζ = 1

3m ,

p(fξ, fζ) = p
(
f
(

1
3n

)
, f

(
1
3m

))
= p

(
1

3n+1 ,
1

3m+1

)
= 1

3m+1

p(ξ, ζ) + | p(ξ, fξ)− p(y, fζ)| = p
(

1
3n ,

1
3m

)
+

∣∣ p ( 1
3n , f

(
1
3n

))
− p

(
1
3m , f

(
1
3m

))∣∣
= 1

3m +
∣∣ p ( 1

3n ,
1

3n+1

)
− p

(
1
3m , 1

3m+1

)∣∣
= 1

3m +
∣∣ 1
3n+1 − 1

3m+1

∣∣
= 1

3m + 1
3

∣∣ 1
3n − 1

3m

∣∣ .
So,

p(fξ, fζ) ≤ 1

3
[ p(ξ, ζ) + | p(ξ, fξ)− p(ζ, fζ)|] ≤ 1

2
[ p(ξ, ζ) + | p(ξ, fξ)− p(ζ, fζ)|] .

Case3: If ξ = 0, ζ = 1
3m ,then
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p(fξ, fζ) = p
(
f(0), f

(
1
3m

))
= p

(
0, 1

3m+1

)
= 1

3m+1 .

p(ξ, ζ) + | p(ξ, fξ)− p(ζ, fζ)| = p
(
0, 1

3m

)
+

∣∣ p (0, f ( 0))− p
(

1
3m , f

(
1
3m

))∣∣
= 1

3m+1 +
∣∣ p (0, 0)− p

(
1
3m , 1

3m+1

)∣∣
= 1

3m+1 +
∣∣0− 1

3m+1

∣∣
= 2

3m+1 .

So,

p(fξ, fζ) ≤ 1

2
[p(ξ, ζ) + |p(ξ, fξ)− p(ζ, fζ)|] .

If ζ ̸= fζ then y ̸= 0, so
inf{p(ξ, ζ) + p(ξ, fξ) : ξ ∈ 0} > 0

Case1: If ξ = 1
3n , so,

inf{p(ξ, ζ) + p(ξ, fξ) : ξ ∈ 0} = inf{ζ + 1

3n+1
: ξ ∈ 0} = ζ > 0.

Case2: If ξ = 0, so,

inf{p(ξ, ζ) + p(ξ, fξ) : ξ ∈ 0} = inf{ζ + 0 : ξ ∈ 0} = ζ > 0.

Then, f fulfilled the conditions of Theorem 2.2, and so, f has a unique fixed point.

Definition 2.5. 5 The function φ : [0,∞) → [0,∞) is classified as an altering distance function if it fulfills
the subsequent criteria:

1. The function φ is continuous and nondecreasing;

2. The condition φ(t) = 0 holds true if and only if t = 0.

From this point forward, we will refer to the set of all altering distance functions as Ψ.

Definition 2.6. 6 Let S be the class of all functions α : R+ → [0, 1) that satisfy the following implication:

α(tn) → 1 =⇒ tn → 0.

Now, we are ready to introduce our definition.

Definition 2.7. Let (0, d) denote a b-metric space that is endowed with the ωt-distance denoted by p. A self-
mapping f : 0 → 0 is classified as a (φ, α)-Geraghty contraction if there exist functions φ ∈ Ψ and α ∈ S
such that the following condition holds:

φsp(fξ, fζ) ≤ α(p(ξ, ζ))φp(ξ, ζ), ∀ξ, ζ ∈ 0. (6)

The concept of Geraghty contraction extends the famous Banach contraction principle.1
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Remark 2.8. If f is (φ, α)-Geraghty contraction, then for all ξ, ζ ∈ 0, we have

p(fξ, fζ) <
1

s
p(ξ, ζ).

Remark 2.9. According to Lemma 1.7, if a sequence (ξn) is not a Cauchy sequence, then ∃ ε > 0 such that
for each K ∈ N, there exist m > n > K such that p(ξn, ξm) ≥ ε.

Lemma 2.10. Assume that the sequence (xn) does not qualify as a Cauchy sequence. Consequently, there
exists a positive constant ε > 0 such that we can identify subsequences (xnk

) and (xmk
) from the sequence

(xn), where the indices satisfy nk > mk > k, and it holds that p(xnk
, xmk

) ≥ ε for every natural number
K. Additionally, for each mk, we can select nk to be the smallest integer greater than mk that meets the
aforementioned condition. It follows that p(xnk−1, xmk

) < ε.

Proof. By remark 2.9, there is ε > 0 such that for each K ∈ N, ∃m > n > K such that p(xn, xm) ≥ ε for
m > n > K.

For K = 1, there are n1 > m1 > 1 such that p(ξn1 , ξm1) ≥ ε. If we choose n1 corresponding to m1 such that
it is the smallest integer with n1 > m1, then we get p(ξn1−1, ξm1

) < ε.

Again for K = 2, there are n2 > m2 > 2 such that p(ξn2
, ξm2

) ≥ ε. If we choose n2 corresponding to m2

such that it is the smallest integer with n2 > m2, then we get p(ξn2−1, ξm2
) < ε.

By continuing this process, we get that for any K there are nk > mk > k such that p(ξnk
, ξmk

) ≥ ε.
Further, corresponding to mk, we can choose nk such that it is the smallest integer with nk > mk such that
p(ξnk−1, ξmk

) < ε.

Theorem 2.11. Let (0, d) represent a complete b-metric space, with p denoting an ωt-distance on 0, and let
f : 0 → 0 be characterized as a (φ, α)-Geraghty mapping. We consider one of the following conditions:

1. If u ̸= fu, then the infimum inf{p(ξ, u) + p(fξ, u) : ξ ∈ 0} is greater than 0.

2. The function f is continuous.

Under these assumptions, it can be concluded that f possesses a unique fixed point.

Proof. Let ξ0 ∈ 0. We define a sequence ξn = f(ξn−1) for n ∈ N. For any n ∈ N, based on the contractive
condition, it follows that

φsp(ξn, ξn+1) = φsp(f(ξn−1), f(ξn)) ≤ α(p(ξn−1, ξn))φp(ξn−1, ξn).

Given that α(t) < 1 for all t > 0, we can conclude that φsp(ξn, ξn+1) < φp(ξn−1, ξn). Since φ is a
nondecreasing function, this leads us to the desired result.

p(ξn, ξn+1) <
1

s
p(ξn−1, ξn).

By induction, we have

p(ξn, ξn+1) <

(
1

s

)n

p(ξ0, ξ1).

So,
lim
n→∞

p(ξn, ξn+1) = 0. (7)
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Similarly, we can show that

lim
n→∞

p(ξn+1, ξn) = 0. (8)

We aim to demonstrate that:

lim
n,m→+∞

p(ξn, ξm) = 0,

which indicates that the sequence (0n) is a Cauchy sequence.

To explore this, we will assume the opposite, specifically that:

lim
n,m→+∞

p(ξn, ξm) ̸= 0.

Consequently, there exists an ϵ > 0 along with two subsequences (ξnk
) and (ξmk

) derived from (ξn), where
(mk) is selected as the smallest index satisfying the condition.

p(ξnk
, ξmk

) ≥ ϵ, mk > nk > k. (9)

This implies that

p(ξnk
, ξmk−1) < ϵ. (10)

Set δk = p(ξnk−1, ξmk
). By Remark 2.8, Equations 9 and 10, and (a) of the definition 1.3, we get

ϵ ≤ p(ξnk
, ξmk

)

< 1
sp(ξnk−1, ξmk−1)

≤ [p(ξnk−1, ξmk
) + p(ξmk

, ξmk−1)].

By considering the limit inferior as k approaches +∞ and referencing Equation 8, we obtain

ϵ ≤ lim inf
k→+∞

δk. (11)

In addition,

p(ξnk−1, ξmk
) < 1

sp(ξnk−2, ξmk−1)

≤ [p(ξnk−2, ξnk
) + p(ξnk

, ξmk−1)]

< s[p(ξnk−2, ξnk−1) + p(ξnk−1, ξnk
)] + ϵ.

By considering the limit inferior as k approaches +∞ and referencing Equation 8, we obtain

lim sup
k→+∞

δk ≤ ϵ. (12)
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By Equations 11 and 12, we get

lim
k→+∞

δk = ϵ. (13)

Now, set γk = p(ξnk
, ξmk+1). By Remark 2.8, we get

p(ξnk
, ξmk+1) ≤

1

s
p(ξnk−1, ξmk

).

By applying the limit superior to both sides, we obtain

lim sup
k→+∞

γk ≤ ϵ

s
. (14)

On the other hand, we have:

ϵ ≤ p(ξnk
, ξmk

) ≤ s[p(ξnk
, ξmk+1) + p(ξmk+1, ξmk

)].

By taking the limit inferior on both sides, we get:

ϵ

s
≤ lim inf

k→+∞
γk. (15)

By Equations 14 and 15, we get

lim
k→+∞

γk =
ϵ

s
. (16)

By substituting ξ = ξnk−1, ζ = ξmk
in Condition 6, we have

φsp(fξnk−1, fξmk
) ≤ α(p(ξnk−1, ξmk

))φp(ξnk−1, ξmk
).

So,
φsp(ξnk

, ξmk+1)

φp(ξnk−1, ξmk
)

≤ α(p(ξnk−1, ξmk
)).

By taking the limit as k → ∞, we get

φ(s ϵ
s )

φ(ϵ)
≤ lim

k→∞
α(p(ξnk−1, ξmk

)).

So, we have lim
k→∞

α(p(ξnk−1, ξmk
)) = 1, hence, lim

k→∞
p(ξnk−1, ξmk

) = 0 a contradiction since ϵ > 0. Hence

(0n) is a Cauchy sequence. Since (0, d) is a complete b-metric space. Thus, there is u ∈ 0 such that
(ξn) → u.
Given that

lim
n,m→∞

p(ξn, ξm) = 0,

then for a specified ϵ > 0, there exists a k ∈ N such that p(ξn, ξm) ≤ ϵ for all n,m ≥ k. By virtue of the
s-lower semi-continuity of p, it follows that
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p(ξn, u) ≤ lim
m→∞

inf sp(ξn, xm) ≤ sϵ, ∀n ≥ k.

Next, let us assume that condition (1) is satisfied. If u ̸= fu, then we have

inf{p(ξ, u) + p(fξ, u) : ξ ∈ 0} ≤ inf{p(ξn, u) + p(fξn, u) : n ∈ N}

= inf{p(ξn, u) + p(ξn+1, u) : n ∈ N} ≤ sϵ,

for all ϵ > 0, which leads to a contradiction.
Hence, fu = u. If (2) holds, the mapping f is continuous, and it is obvious that fu = u.

To establish the uniqueness, let us assume the existence of an element v such that v = fv. According to
Condition 6 and the characteristics of φ, we can derive the following

φp(u, v) ≤ φsp(u, v) = φsp(fu, fv) ≤ α(p(u, v))φ(p(u, v)).

So, (1− α(p(u, v)))p(u, v) ≤ 0, and hence, p(u, v) = 0. In a similar manner, we can show that p(u, u) = 0,
Thus, d(u, v) = 0, which implies that u = v.

Example 2.12. Let 0 = [0, 1] with the b-metric space defined by d(ξ, ζ) = (ξ − ζ)2, and consider the ωt

distance p(ξ, ζ) = |ζ|2. Define a function f : 0 → 0 by f(ξ) = 1
2ξ. Assume the altering distance function

φ(t) = t and α(t) = 2
3 . Then we have

p(fξ, fζ) = |fζ|2 = |1
2
ζ|2 =

1

4
ζ2,

sp(fξ, fζ) =
1

2
|ζ|2,

φ(sp(fξ, fζ)) =
1

2
ζ2,

p(ξ, ζ)) = |ζ|2,

φp(ξ, ζ)) = |ζ|2,

α(p(ξ, ζ)) =
2

3
,

α(p(ξ, ζ))φp(ξ, ζ)) =
2

3
ζ2.

So,
φsp(fξ, fζ) ≤ α(p(ξ, ζ))φp(ξ, ζ)

Thus, all conditions of Theorem 2.11 hold true, and so, f has a unique fixed point.
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Conclusion

The concept of fixed points is fundamental in both pure and applied mathematics, with numerous applications
in various contexts. Following Banach’s results in metric spaces, many researchers have expanded upon the
Banach contraction principle in diverse ways. In our study, we established several fixed point results within
the framework of the ωt distance and presented various illustrative examples. Future research could focus
on generalizing our contraction results or exploring outcomes in broader distance spaces. Also, we aim to
incorporate our research with other disciplines, particularly fuzzy set theory, as demonstrated in the studies
conducted by.20–25
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