International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 25 , Issue 4 , PP: 240-249, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Applying Block Method for the Numerical Solutions of the Second Order n-Refined Neutrosophic ODE for n=2, 3

Ahmad A. Abubaker 1 , Wael mahmoud mohammad salameh 2 * , Sara A. Khalil 3 , Ibraheem Abu Falahah 4 , Ahmed Atallah Alsaraireh 5 , Abdallah Al-Husban 6

  • 1 Faculty of Computer Studies, Arab Open University, Saudi Arabia - (a.abubaker@arabou.edu.sa)
  • 2 Faculty of Information Technology, Abu Dhabi University, Abu Dhabi, UAE - (wael.salameh@adu.ac.ae)
  • 3 Mathematics Department, Faculty of Science, Applied Science Private University (ASU) Amman, Jordan - (s_khalil@asu.edu.jo)
  • 4 Department of Mathematics, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa, 13133, Jordan - (iabufalahah@hu.edu.jo)
  • 5 The university of Jordan–Aqaba Department of computer information systems, Jordan - (a.alsarairah@ju.edu.jo)
  • 6 Department of Mathematics, Faculty of Science and Technology, Irbid National University, P.O. Box: 2600 Irbid, Jordan; Jadara Research Center, Jadara University, Irbid 21110, Jordan - (dralhosban@inu.edu.jo)
  • Doi: https://doi.org/10.54216/IJNS.250420

    Received: July 11, 2024 Revised: October 06, 2024 Accepted: December 27, 2024
    Abstract

    In this paper, we study the applications of block method to find the numerical solutions of some neutrosophic differential problems, where we discuss the approximated n-refined neutrosophic solutions and absolute n-refined neutrosophic errors in two special cases for n=2, and n=3. In addition, we list the numerical tables of our results.

    Keywords :

    Weak Fuzzy Complex (WFC) Numbers , Weak Fuzzy Complex Functions, , Differential Equations (DE)

    References

    [1] J. B. Rosser, Runge-Kutta for all seasons, in SIAM Rev. 9, 417-452 (1967).

    [2] L. F. Shampine and H. F. Watts, Block implicit one-step method, in Math. Comp, 23, 731-740(1969).

    [3] P. B. Worland, Parallel methods for the numerical solutions of ordinary differential equations, in IEEE Transactions on Computers, 25, 1045-1048 (1976).

    [4] Z. A. Majid, M. B. Suleiman, F. Ismail and M. Othman, 2-point implicit block one-step method half Gauss-Seidel for solving first order ordinary differential equations, in Matematika, Jabatan UTM, 19, 91-100 (2003).

    [5] P. C. Chakravarti and P. B. Worland, A class of self-starting methods for the numerical solution of y f (x, y), in BIT, 11, 368-383 (1971).

    [6] Shihadeh, A., Matarneh, K. A. M., Hatamleh, R., Al-Qadri, M. O., & Al-Husban, A. (2024). On The Two-Fold Fuzzy n-Refined Neutrosophic Rings For 2≤ 3. Neutrosophic Sets and Systems, 68, 8-25.

    [7] Abdallah Shihadeh, Khaled Ahmad Mohammad Matarneh, Raed Hatamleh, Randa Bashir Yousef Hijazeen, Mowafaq Omar Al-Qadri, Abdallah Al-Husban.(2024). An Example of Two-Fold Fuzzy Algebras Based On Neutrosophic Real Numbers, Neutrosophic Sets and Systems, 67,169-178.

    [8] S. H. Karim, A. S. Jain, and R. Y. Choudhary, "Properties of neutrosophic ideals in semigroups and their applications," Journal of Mathematical Structures, vol. 48, no. 4, pp. 217-230, 2022.

    [9] S. M. R. S. V. Sarma, R. Kumar, and P. V. S. R. K. Kumar, "Complex cubic intuitionistic fuzzy sets and their applications to semigroups and ring theory," Mathematical Logic Quarterly, vol. 64, no. 2, pp. 150-160, 2024.

    [10] F. Smarandache, "Neutrosophic singular boundary value problems and their applications," Neutrosophic Sets and Systems, vol. 35, pp. 108-115, 2023.

    [11] J. Zhang and Q. Yang, "The k-threshold conversion number for graph products and its generalizations in neutrosophic logic," Mathematical Logic Quarterly, vol. 61, no. 6, pp. 612-627, 2023.

    [12] Raed Hatamleh, Abdallah Al-Husban, K. Sundareswari, G.Balaj, M.Palanikumar (2025). Complex Tangent Trigonometric Approach Applied to (γ, τ)-Rung Fuzzy Set using Weighted Averaging, Geometric Operators and its Extension. Communications on Applied Nonlinear Analysis, 32 (5), PP: 133-144.

    [13] M. G. Ali, S. M. Amin, and H. R. Ghaffari, "Generalized weighted operators and their applications in fuzzy decision-making systems based on trigonometric functions," Journal of Applied Mathematics and Computational Mechanics, vol. 20, no. 4, pp. 113-127, 2024.

    [14] A. M. Peralta and D. Cabezas, "Linear orthogonality preservers between function spaces associated with commutative JB*-triples," J. Math. Phys., vol. 63, no. 5, p. 053501, 2022, doi: 10.1063/5.0083580.

    [15] Zolotarev, V. A., & Koudelka, L. (2021). The behavior of fuzzy systems under uncertainty in environmental modeling. Journal of Computational and Applied Mathematics, 381, 112874.

    [16] E. G. Belyaev and A. I. Lisin, "Commutative and Noncommutative Operator Models in Quantum Information Theory," J. Math. Phys., vol. 62, no. 7, p. 073502, 2021, doi: 10.1063/5.0052819.

    [17] M. L. Liao, Z. S. Zhou, and Z. X. Liu, "A new approach for solving fuzzy Diophantine equations with applications to cryptography," Fuzzy Optimization and Decision Making, vol. 22, no. 3, pp. 293-307, 2023.

    [18] X. Liu, H. Li, and H. Zhang, "A hybrid cryptographic protocol based on fuzzy logic and split-complex numbers," Journal of Mathematical Cryptography, vol. 27, pp. 45-60, 2024.

    [19] T. A. Doe, P. R. Singh, and L. V. Gupta, "Study of neutrosophic ideals in ternary semigroups and their algebraic properties," Journal of Algebraic Structures and Applications, vol. 42, no. 3, pp. 155-170, 2024..

    Cite This Article As :
    A., Ahmad. , mahmoud, wael. , A., Sara. , Abu, Ibraheem. , Atallah, Ahmed. , Al-Husban, Abdallah. Applying Block Method for the Numerical Solutions of the Second Order n-Refined Neutrosophic ODE for n=2, 3. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 240-249. DOI: https://doi.org/10.54216/IJNS.250420
    A., A. mahmoud, w. A., S. Abu, I. Atallah, A. Al-Husban, A. (2025). Applying Block Method for the Numerical Solutions of the Second Order n-Refined Neutrosophic ODE for n=2, 3. International Journal of Neutrosophic Science, (), 240-249. DOI: https://doi.org/10.54216/IJNS.250420
    A., Ahmad. mahmoud, wael. A., Sara. Abu, Ibraheem. Atallah, Ahmed. Al-Husban, Abdallah. Applying Block Method for the Numerical Solutions of the Second Order n-Refined Neutrosophic ODE for n=2, 3. International Journal of Neutrosophic Science , no. (2025): 240-249. DOI: https://doi.org/10.54216/IJNS.250420
    A., A. , mahmoud, w. , A., S. , Abu, I. , Atallah, A. , Al-Husban, A. (2025) . Applying Block Method for the Numerical Solutions of the Second Order n-Refined Neutrosophic ODE for n=2, 3. International Journal of Neutrosophic Science , () , 240-249 . DOI: https://doi.org/10.54216/IJNS.250420
    A. A. , mahmoud w. , A. S. , Abu I. , Atallah A. , Al-Husban A. [2025]. Applying Block Method for the Numerical Solutions of the Second Order n-Refined Neutrosophic ODE for n=2, 3. International Journal of Neutrosophic Science. (): 240-249. DOI: https://doi.org/10.54216/IJNS.250420
    A., A. mahmoud, w. A., S. Abu, I. Atallah, A. Al-Husban, A. "Applying Block Method for the Numerical Solutions of the Second Order n-Refined Neutrosophic ODE for n=2, 3," International Journal of Neutrosophic Science, vol. , no. , pp. 240-249, 2025. DOI: https://doi.org/10.54216/IJNS.250420