International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 25 , Issue 3 , PP: 363-372, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Some Types of Nth-Locally Compactness Spaces

Rehab Alharbi 1 , Jamal Oudetallah 2 , Salsabiela Rawashdeh 3 , Ala Amourah 4 *

  • 1 Department of Mathematics, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia - (ralharbi@jazanu.edu.sa)
  • 2 Department of Mathematics, University of Petra, Amman, 11196, Jordan - (drjamal@inu.edu.jo)
  • 3 Department of Mathematics, Irbid National University, Irbid 2600, Jordan - (sabeelar27@gmail.com)
  • 4 Mathematics Education Program, Faculty of Education and Arts, Sohar University, Sohar 311, Oman; Applied Science Research Center. Applied Science Private University, Amman, Jordan - (AAmourah@su.edu.om)
  • Doi: https://doi.org/10.54216/IJNS.250332

    Received: March 22, 2024 Revised: June 19, 2024 Accepted: October 29, 2024
    Abstract

    This work focuses on nth-locally compact spaces, which are topologies with locally compactness properties. Furthermore, the properties of these spaces will be studied in terms of locally compact spaces. Theoretical conclusions have been given and proven, and well-known theorems for locally compact spaces have been extended to nth-topologies. An instance case is offered to back up the findings.

    Keywords :

    Compact spaces , nth-locally compact spaces , Metacompact space , Bitopological spaces

    References

    [1] Dugundji ;J. ,( 1966). Topology, Allyn and Bacon, Boston.

    [2] J. Oudetallah , ON FEEBLY PAIRWISE EXPANDABLE SPACE, J. Math. Comput. Sci. 11 (2021), No. 5, 6216-6225.

    [3] J. Oudetallah, Nearly Expandability in bitopological spaces, Advances in Mathematics: Scientific Journal 10 (2021), 705-712.

    [4] J. Kelley, General topology, Van Nostrand Company, 1955. kyungpook Math.J.,32, No. 2(1992), 273- 284.

    [5] Kim,Y. W. (1968). Pairwise Compactness. Publ. Math. Debrecen.15, 87-90.

    [6] Levine; N. , (1963). Semi-Open Sets and Semi-Continuity in Topological Spaces , Amer. Math. Monthly, 70, 36-41.

    [7] Willard ; S., (1970).General Topology , Addison- Wesley Publishing Company, Inc.

    Cite This Article As :
    Alharbi, Rehab. , Oudetallah, Jamal. , Rawashdeh, Salsabiela. , Amourah, Ala. Some Types of Nth-Locally Compactness Spaces. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 363-372. DOI: https://doi.org/10.54216/IJNS.250332
    Alharbi, R. Oudetallah, J. Rawashdeh, S. Amourah, A. (2025). Some Types of Nth-Locally Compactness Spaces. International Journal of Neutrosophic Science, (), 363-372. DOI: https://doi.org/10.54216/IJNS.250332
    Alharbi, Rehab. Oudetallah, Jamal. Rawashdeh, Salsabiela. Amourah, Ala. Some Types of Nth-Locally Compactness Spaces. International Journal of Neutrosophic Science , no. (2025): 363-372. DOI: https://doi.org/10.54216/IJNS.250332
    Alharbi, R. , Oudetallah, J. , Rawashdeh, S. , Amourah, A. (2025) . Some Types of Nth-Locally Compactness Spaces. International Journal of Neutrosophic Science , () , 363-372 . DOI: https://doi.org/10.54216/IJNS.250332
    Alharbi R. , Oudetallah J. , Rawashdeh S. , Amourah A. [2025]. Some Types of Nth-Locally Compactness Spaces. International Journal of Neutrosophic Science. (): 363-372. DOI: https://doi.org/10.54216/IJNS.250332
    Alharbi, R. Oudetallah, J. Rawashdeh, S. Amourah, A. "Some Types of Nth-Locally Compactness Spaces," International Journal of Neutrosophic Science, vol. , no. , pp. 363-372, 2025. DOI: https://doi.org/10.54216/IJNS.250332