International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 25 , Issue 2 , PP: 197-205, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

On the Numerical Solutions for Some Neutrosophic Singular Boundary Value Problems by Using (LPM) Polynomials

Ahmad A. Abubaker 1 * , Raed Hatamleh 2 , Khaled Matarneh 3 , Abdallah Al-Husban 4

  • 1 Faculty of Computer Studies, Arab Open University, Saudi Arabia - (a.abubaker@arabou.edu.sa)
  • 2 Department of Mathematics, Faculty of Science and Information Technology, Jadara University, P.O. Box 733, Irbid 21110, Jordan - (raed@jadara.edu.jo)
  • 3 Faculty of Computer Studies, Arab Open University, Saudi Arabia - (k.matarneh@arabou.edu.sa)
  • 4 Department of Mathematics, Faculty of Science and Technology, Irbid National University, P.O. Box: 2600 Irbid, Jordan; Jadara Research Center, Jadara University, Irbid 21110, Jordan - (dralhosban@inu.edu.jo)
  • Doi: https://doi.org/10.54216/IJNS.250217

    Received: February 16, 2024 Revised: May 06, 2024 Accepted: August 14, 2024
    Abstract

    The main goal of this work is to study the effect of applying Lagrange's polynomials on finding the numerical solutions of many different neutrosophic boundary value problems, where we use those polynomials to solve three different neutrosophic boundary value problems numerically, and we present many numerical tables to compare the accuracy of the solutions obtained by Lagrange's polynomials with other famous methods such as Adomian's method.

    Keywords :

    Lagrange's polynomials , Chebyshev's polynomials , Numerical solutions , Boundary value problem

    References

    [1] Kanth. A. S. V. R., (2007). Cubic spline polynomial for non-linear singular two-point boundary value problems. Appl. Math. 189, 2017–2022.

    [2] T.Qawasmeh,R.Hatamleh,(2023).A new contraction based on H-simulation functions in the frame of extended b-metric spaces and application,International Journal of Electrical and Computer Engineering  13 (4),4212- 4221.

    [3] Salama, A. Dalla, R. Al, M. Ali, R. (2022). On Some Results About The Second Order Neutrosophic, Differential Equations By Using Neutrosophic Thick Function. Journal of Neutrosophic and Fuzzy Systems, 4(1), 30-40. DOI: https://doi.org/10.54216/JNFS.040104

     [4] Hatamleh, R. (2003). On the Form of Correlation Function for a Class of Nonstationary Field with a Zero Spectrum.The Rocky Mountain Journal of Mathematics, 33(1)159-173.

    (Doi: https://doi.org/10.1216/rmjm/1181069991).

    [5] Ayman Hazaymeh, Rania Saadeh, Raed Hatamleh, Mohammad W Alomari, Ahmad Qazza, (2023). A Perturbed Milne’s Quadrature Rule for n-Times Differentiable Functions with Lp-Error Estimates, Axioms-MDPI, 12(9), 803.

    [6] Noori Skandari. M.H. Kamyad.A.V.Effati.; S. (2016).Smoothing approach for a class of nonsmooth optimal control problems. Applied Mathematical Modelling, 40(2), 886–903.

    [7] Salama, A. Al, M. Dalla, R. Ali, R. (2022). A Study of Neutrosophic Differential Equations By Using the One-Dimensional Geometric AH-Isometry Of NeutrosophicLaplace Transformation. Journal of Neutrosophic and Fuzzy Systems, 4(2), 08-25. DOI: https://doi.org/10.54216/JNFS.040201

     [8] Hatamleh, R.,Zolotarev,V.A.(2016).Triangular Models of Commutative Systems of Linear Operators Close to Unitary Operators. Ukrainian Mathematical Journal, 68(5), 791–811.

    (Doi: https://doi.org/10.1007/s11253-016-1258-6).

    [9] Kumar.M.; Gupta.Y., ( 2010). Methods for solving singular boundary value problems using splines.A review, J. Appl. Math. 32, 265–278.

    [10] Kumar. M. (2003). A difference method for singular two-point boundary value problems. Applied Mathematics and Computation, 146 (2-3),879–884.

    [11] Aswad, M., “A Study of The Integration of Neutrosophic Thick Function", International Journal of neutrosophic Science, 2020.

    [12] Kanth. A. S. V. R.; Reddy.Y.N.(2004).Higher order finite difference method for a class of singular boundary value problems. Appl. Math. Comput., 155, 249-258.

    [13] Noori Skandari. M. H.; Ghaznavi. M.,(2018). A novel technique for a class of singular boundary value problems. Shahrood University of Technology, Shahrood, Iran, 6|(1), pp. 40-52.

    [14] Hatamleh, R., Zolotarev, V. A.( 2015).On Model Representations of Non-Selfadjoint Operators with Infinitely Dimensional Imaginary Component. Journal of Mathematical Physics, Analysis, Geometry,11(2), 174–186. https://doi.org/10.15407/mag11.02.174.          

    [15] Hasan.Y.Q.;Zhu.L.M.;Solving singular boundary value problems of higher-order ordinary differential equations by modified Adomian decom-position method Commun. Nonlinear Sci. Numer. Simul., 14,2592-2596.

    [16] Hatamleh, R.,Zolotarev,V.A.(2014). On Two-Dimensional Model Representations of One Class of Commuting Operators. Ukrainian Mathematical Journal, 66(1), 122-144.

    (Doi: https://doi.org/10.1007/s11253-014-0916-9).

    [17] T.Qawasmeh, A.Qazza,R.Hatamleh,M.W.Alomari,R.Saadeh.(2023).Further accurate numerical radius inequalities. Axiom-MDPI, 12 (8), 801.

    [18] Ayman Hazaymeh, Ahmad Qazza, Raed Hatamleh,Mohammad W. Alomari, Rania Saadeh.(2023).On Further Refinements of Numerical Radius Inequalities,Axiom-MDPI,12(9),807.

    [19] Heilat, A. S., Zureigat, H., Hatamleh, R., Batiha, B. (2021). New Spline Method for Solving Linear Two-Point Boundary Value Problems. European Journal of Pure and Applied Mathematics, 14(4), 1283–1294.( Doi: https://doi.org/10.29020/nybg.ejpam.v14i4.4124)

    [20] Batiha, B., Ghanim, F., Alayed, O., Hatamleh, R., Heilat, A. S., Zureigat, H., & Bazighifan, O. (2022). Solving Multispecies Lotka–Volterra Equations by the Daftardar-Gejji and Jafari Method. International Journal of Mathematics and Mathematical Sciences, 2022, 1–7.  (Doi:https://doi.org/10.1155/2022/1839796).

    [21] Heilat, A. S., Batiha,B , T. Qawasmeh, Hatamleh R.(2023). Hybrid Cubic B-spline Method for Solving A Class of Singular Boundary Value Problems. European Journal of Pure and Applied Mathematics, 16(2), 751-762. (DOI: https://doi.org/10.29020/nybg.ejpam.v16i2.4725).

     [22] Edduweh, H., & Roy, S. (2024). A Liouville optimal control framework in prostate cancer. Applied Mathematical Modelling.

    [23] Alrwashdeh, D. Alkhouli, T. Soiman, A. Allouf, A. Edduweh, H. Al-Husban, A. (2025). On Two Novel Generalized Versions of Diffie-Hellman Key Exchange Algorithm Based on Neutrosophic and Split-Complex Integers and their Complexity Analysis. Journal of International Journal of Neutrosophic Science, 25( 2), 01-10. DOI: https://doi.org/10.54216/IJNS.250201

    [24] Abdallah Al-Husban & Abdul Razak Salleh 2015. Complex fuzzy ring. Proceedings of 2nd International Conference on Computing, Mathematics and Statistics. Pages. 241-245. Publisher: IEEE 2015.

    [25] Al-Shbeil, I., Djenina, N., Jaradat, A., Al-Husban, A., Ouannas, A., & Grassi, G. (2023). A new COVID-19 pandemic model including the compartment of vaccinated individuals: global stability of the disease-free fixed point. Mathematics, 11(3), 576.

    [26] Shihadeh, A., Matarneh, K. A. M., Hatamleh, R., Hijazeen, R. B. Y., Al-Qadri, M. O., & Al-Husban, A. (2024). An Example of Two-Fold Fuzzy Algebras Based On Neutrosophic Real Numbers. Neutrosophic Sets and Systems, 67, 169-178.

    [27] Abdallah Shihadeh, Khaled Ahmad Mohammad Matarneh, Raed Hatamleh, Mowafaq Omar Al-Qadri, Abdallah Al-Husban. (2024). On the Two-Fold Fuzzy n-Refined Neutrosophic Rings For 2 ≤3. Neutrosophic Sets and Systems, 68, 8-25.

    [28] Al-Husban, A., Al-Qadri, M. O., Saadeh, R., Qazza, A., & Almomani, H. H. (2022). Multi-fuzzy rings. 

    WSEAS Transactions on Mathematics, 21, 701-706.

    [29] Hamadneh, T., Hioual, A., Alsayyed, O., Al-Khassawneh, Y. A., Al-Husban, A., & Ouannas, A. (2023). The FitzHugh–Nagumo Model Described by Fractional Difference Equations: Stability and Numerical Simulation. Axioms, 12(9), 806.

    Cite This Article As :
    A., Ahmad. , Hatamleh, Raed. , Matarneh, Khaled. , Al-Husban, Abdallah. On the Numerical Solutions for Some Neutrosophic Singular Boundary Value Problems by Using (LPM) Polynomials. International Journal of Neutrosophic Science, vol. , no. , 2025, pp. 197-205. DOI: https://doi.org/10.54216/IJNS.250217
    A., A. Hatamleh, R. Matarneh, K. Al-Husban, A. (2025). On the Numerical Solutions for Some Neutrosophic Singular Boundary Value Problems by Using (LPM) Polynomials. International Journal of Neutrosophic Science, (), 197-205. DOI: https://doi.org/10.54216/IJNS.250217
    A., Ahmad. Hatamleh, Raed. Matarneh, Khaled. Al-Husban, Abdallah. On the Numerical Solutions for Some Neutrosophic Singular Boundary Value Problems by Using (LPM) Polynomials. International Journal of Neutrosophic Science , no. (2025): 197-205. DOI: https://doi.org/10.54216/IJNS.250217
    A., A. , Hatamleh, R. , Matarneh, K. , Al-Husban, A. (2025) . On the Numerical Solutions for Some Neutrosophic Singular Boundary Value Problems by Using (LPM) Polynomials. International Journal of Neutrosophic Science , () , 197-205 . DOI: https://doi.org/10.54216/IJNS.250217
    A. A. , Hatamleh R. , Matarneh K. , Al-Husban A. [2025]. On the Numerical Solutions for Some Neutrosophic Singular Boundary Value Problems by Using (LPM) Polynomials. International Journal of Neutrosophic Science. (): 197-205. DOI: https://doi.org/10.54216/IJNS.250217
    A., A. Hatamleh, R. Matarneh, K. Al-Husban, A. "On the Numerical Solutions for Some Neutrosophic Singular Boundary Value Problems by Using (LPM) Polynomials," International Journal of Neutrosophic Science, vol. , no. , pp. 197-205, 2025. DOI: https://doi.org/10.54216/IJNS.250217