Volume 25 , Issue 1 , PP: 228-238, 2024 | Cite this article as | XML | Html | PDF | Full Length Article
Ala Amourah 1 * , Tariq Al-Hawary 2 , Feras Yousef 3 , Jamal Salah 4
Doi: https://doi.org/10.54216/IJNS.250121
The aim of this study is to present novel collections of bi-univalent functions, which are characterized using the Bell Distribution. These collections are delineated through the application of Jacobi polynomials. We have established bounds for the Taylor-Maclaurin coefficients, particularly |a2| and |a3|. Additionally, we have investigated the Fekete-Szeg¨o functional issues pertinent to functions within these subclasses. By concentrating on particular parameters in our principal findings, we have identified numerous new insights.
Jacobi polynomials , analytic functions , univalent functions , bi-univalent functions , Fekete-Szeg¨ , o problem.
[1] A. Legendre, Recherches sur laattraction des sph´eroides homog´enes, M´emoires pr´esentes par divers savants a laAcad´emie des Sciences de laInstitut de France, Paris, 10 (1785), 411-434.
[2] H. Bateman, Higher Transcendental Functions. McGraw-Hill, 1953.
[3] P.L. Duren, Univalent Functions. Grundlehren der MathematischenWissenschaften, Band 259, Springer- Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
[4] S. S. Miller, P. T. Mocanu, Second Order Differential Inequalities in the Complex Plane. J. Math. Anal. Appl. 65 (1978), 289–305.
[5] S. S. Miller, P. T. Mocanu, Differential Subordinations and Univalent Functions. Mich. Math. J. 28 (1981), 157–172.
[6] S. S. Miller, P. T. Mocanu, Differential Subordinations. Theory and Applications. Marcel Dekker, Inc.: New York, NY, USA, 2000.
[7] S. Bulut, Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad Journal of Mathematics 43 (2013), 59–65.
[8] B.A. Frasin, Coefficient bounds for certain classes of bi-univalent functions, Hacettepe Journal of Mathematics and Statistics 43.3 (2014), 383-389.
[9] B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Applied Mathematics Letters 24 (2011), 1569–1573.
[10] Tariq Al-Hawary, Ala Amourah, Abdullah Alsoboh, and Omar Alsalhi. A new comprehensive subclass of analytic bi-univalent functions related to gegenbauer polynomials. Symmetry 15.3 (2023): 576.
[11] G. Murugusundaramoorthy, N. Magesh, V. Prameela, Coefficient bounds for certain subclasses of biunivalent function, Abstract and Applied Analysis, Volume 2013, Article ID 573017, 3 pages.
[12] Z. Peng,G. Murugusundaramoorthy, T. Janani, Coefficient estimate of bi-univalent functions of complex order associated with the Hohlov operator, Journal of Complex Analysis, Volume 2014, Article ID 693908, 6 pages.
[13] A. A. Amourah and Feras Yousef. Some properties of a class of analytic functions involving a new generalized differential operator. Boletim da Sociedade Paranaense de Matematica 38.6 (2020), 33-42.
[14] F. Yousef, B.A. Frasin, T. Al-Hawary, Fekete-Szeg¨o inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials. Filomat 32.9 (2018), 3229-3236.
[15] F. Yousef, T. Al-Hawary, G. Murugusundaramoorthy, Fekete-Szeg¨o functional problems for some subclasses of bi-univalent functions defined by Frasin differential operator. Afrika Matematika 30.3-4 (2019), 495–503.
[16] F. Yousef, S. Alroud, M. Illafe, New subclasses of analytic and bi-univalent functions endowed with coefficient estimate problems. Analysis and Mathematical Physics 11. 2 (2021), 1-12.
[17] F. Yousef, A. Amourah, B.A. Frasin, T. Bulboac, An avant-Garde construction for subclasses of analytic bi-univalent functions. Axioms 11.6 (2022), 267.
[18] Abdullah Alsoboh, Muratlar, and Mucahit Buyankara. Fekete-Szeg¨o Inequality for a Subclass of Bi- Univalent Functions Linked to q-Ultraspherical Polynomials. Contemporary Mathematics (2024), 2366- 2380.
[19] Abdullah Alsoboh and Georgia Irina Oros. A Class of Bi-Univalent Functions in a Leaf-Like Domain Defined through Subordination via q -Calculus. Mathematics 12.10 (2024), 1594.
[20] F. Castellares, S. L. Ferrari, A. J. Lemonte, On the Bell distribution and its associated regression model for count data, Applied Mathematical Modelling 56 (2018), 172-185.
[21] E. T. Bell, Exponential polynomials, Annals of Mathematics 35 (1934),258-277 .
[22] E. T. Bell, Exponential numbers, The American Mathematical Monthly 41.7 (1934), 411-419.
[23] M. Marcokova, V. Guldan, Jacobi Polynomials and Some Related Functions. In Mathematical Methods in Engineering (pp. 219-227). Springer Netherlands.
[24] A. A. Amourah and Mohamed Illafe. A Comprehensive Subclass of Analytic and Bi-Univalent Functions Associated with Subordination.Palestine Journal of Mathematics 9.1 (2020).
[25] A. Amourah, T. Al-Hawary, B. A. Frasin, Application of Chebyshev polynomials to certain class of bi- Bazileviˇc functions of order α + iβ. Afrika Matematika 32 .5 (2021), 1059-1066.
[26] A. Amourah, M. Alomari, F. Yousef, A. Alsoboh, Consolidation of a Certain Discrete Probability Distribution with a Subclass of Bi-Univalent Functions Involving Gegenbauer Polynomials. Mathematical Problems in Engineering 2022 (2022).
[27] A. Amourah, B. A. Frasin, M. Ahmad, F. Yousef, Exploiting the Pascal distribution series and Gegenbauer polynomials to construct and study a new subclass of analytic bi-univalent functions. Symmetry 14.1 (2022), 147.
[28] T. Al-Hawary, A. Amourah, B. A. Frasin, Fekete-Szeg¨o inequality for bi-univalent functions by means of Horadam polynomials. Boletin de la Sociedad Matematica Mexicana 27. 3 (2021), 1-12.
[29] M. Illafe, A. Amourah, M. Haji Mohd, Coefficient estimates and FeketeˆaC“Szeg?¶ functional inequalities for a certain subclass of analytic and bi-univalent functions. Axioms 11.4 (2022), 147.
[30] A. Hussen, M. Illafe, Coefficient Bounds for a Certain Subclass of Bi-Univalent Functions Associated with Lucas-Balancing Polynomials. Mathematics 11.24 (2023), 4941.
[31] A. Hussen, A. Zeyani, Coefficients and FeketeˆaC“Szeg¨o Functional Estimations of Bi-Univalent Subclasses Based on Gegenbauer Polynomials. Mathematics 11.13 (2023), 2852.
[32] A. Hussen, An Application of the Mittag-Leffler-type Borel Distribution and Gegenbauer Polynomials on a Certain Subclass of Bi-Univalent Functions. Heliyon 9 (2024), e31469.
[33] A. Hussen, M. S. Madi, A. M. Abominjil, Bounding coefficients for certain subclasses of bi-univalent functions related to Lucas-Balancing polynomials. AIMS Mathematics 9.7 (2024), e31469.
[34] M. Illafe, F. Yousef, M. Haji Mohd, S. Supramaniam, Initial Coefficients Estimates and Fekete-Szeg¨o Inequality Problem for a General Subclass of Bi-Univalent Functions Defined by Subordination. Axioms 12.3 (2023), 235.
[35] B. A. Frasin, T. Al-Hawary, F. Yousef, I. Aldawish, On subclasses of analytic functions associated with Struve functions. Nonlinear Functional Analysis and Applications 27.1 (2022), 99-110.
[36] A. Amourah, N. Anakira, M. J. Mohammed and M. Jasim, Jacobi polynomials and bi-univalent functions. Computer Science, 19(4) (2024), 957-968.
[37] A. Amourah, A. Alsoboh, D. Breaz and S. M. El-Deeb, A Bi-Starlike Class in a Leaf-like Domain Defined through Subordination via q- Calculus. Mathematics, 12(11) (2024), 1735.
[38] A. Amourah, B. A. Frasin, J. Salah and T. Al-Hawary, Fibonacci Numbers Related to Some Subclasses of Bi-Univalent Functions. International Journal of Mathematics and Mathematical Sciences, 2024(1) (2024), 8169496.
[39] M. Fekete, G. Szego¨, Eine Bemerkung A˜ber ungerade schlichte Funktionen. Journal of the LondonMathematical Society 1.2 (1933), 85-89.