International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 24 , Issue 4 , PP: 08-38, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Numerical Solutions for Fractional Multi-Group Neutron Diffusion System of Equations

Mohammed Shqair 1 , Iqbal M. Batiha 2 * , Mohammed H. E. Abu-Sei’leek 3 , Shameseddin Alshorm 4 , Amira Abdelnebi 5 , Iqbal H. Jebril 6 * , S. A. Abd El-Azeem 7

  • 1 Faculty of Science, Zarqa University, Zarqa 13110, Jordan - (shqeeeer@gmail.com)
  • 2 Department of Mathematics, Al Zaytoonah University, Amman 11733, Jordan; Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman 346, UAE - (i.batiha@zuj.edu.jo)
  • 3 Faculty of Science, Zarqa University, Zarqa 13110, Jordan - (mseileek@zu.edu.jo)
  • 4 Department of Mathematics, Al Zaytoonah University, Amman 11733, Jordan - (alshormanshams@gmail.com)
  • 5 Laboratory of pure and applied mathematics, University of Mostaganem, Mostaganem 27000, Algeria - (amira.math27@gmail.com)
  • 6 Department of Mathematics, Al Zaytoonah University, Amman 11733, Jordan - (i.jebril@zuj.edu.jo)
  • 7 Physics Department, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Physics Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11757, Egypt - (samah.zy2@gmail.com)
  • Doi: https://doi.org/10.54216/IJNS.240401

    Received: September 25, 2023 Revised: February 19, 2024 Accepted: May 07, 2024
    Abstract

    This paper addresses fractional-order versions of multi-group neutron diffusion systems of equations, focusing on two numerical solutions. First, it employs the Laplace transform method to solve the classical version of multi-group neutron diffusion equations. Subsequently, it transforms these equations into their corresponding fractional-order versions using the Caputo differentiator. To handle the resultant fractional-order system, a novel approach is introduced to reduce it from a system of 2α-order to a system of α-order. This converted system is then solved using the so-called Modified Fractional Euler Method (MFEM). As far as we know, this is the first time that such numerical schemes have been used to deal with the systems at hand. The paper covers the multi-group neutron diffusion equations in spherical, cylindrical, and slab reactors, all solved and converted for verification purposes.

    Keywords :

    multi-group neutron diffusion equations , Laplace transform method , fractional calculus , modified fractional Euler method.

    References

    [1] M. A. Shafii, I. Zakiya, D. Fitriyani, S. H. J. Tongkukut, A. G. Abdulla, Characteristics of neutron diffusion coefficient as a function of energy group in the one-dimensional multi-group diffusion equation of finite slab reactor core, Journal of Physics: Conference Series, vol. 1869, 012202, 2021.

    [2] T. Sardar, S. Saha Ray, R. K. Bera, The solution of coupled fractional neutron diffusion equations with delayed neutrons, International Journal of Nuclear Energy Science and Technology, vol. 5, no. 2, pp. 105–133, 2010.

    [3] A. S. Kochenov, The stability of a nuclear power plant, Journal of Nuclear Energy. Part A. Reactor Science, vol. 12, no. 4, pp. 194-200, 1960.

    [4] S. Dababneh, K. Khasawneh, Z. Odibat, An alternative solution of the neutron diffusion equation in cylindrical symmetry, Ann. Nucl. Energy, vol. 38, pp. 1140–1143, 2010.

    [5] M. Shqair, Developing a new approaching technique of homotopy perturbation method to solve twogroup reflected cylindrical reactor, Results Phys., vol. 12, pp. 1880–1887, 2019.

    [6] M. Shqair, E. A. Farrag, M. Al-Smadi, Solving multi-group reflected spherical reactor system of equations using the homotopy perturbation method, Mathematics, vol. 10, no. 10, 1784, 2022.

    [7] M. Shqair, I. Ghabar, A. Burqan, Using Laplace residual power series method in solving coupled fractional neutron diffusion equations with delayed neutrons system, Fractal Fract., vol. 7, 219, 2023.

    [8] S. Khaled, Exact solution of the one-dimensional neutron diffusion kinetic equation with one delayed precursor concentration in Cartesian geometry, AIMS Math., vol. 7, pp. 12364–12373, 2022.

    [9] T. Sardar, S. Ray, R. Bera, The solution of coupled fractional neutron diffusion equations with delayed neutrons, Int. J. Nuclear Energy Sci. Technol., vol. 5, pp. 105–133, 2010.

    [10] R. A. El-Nabulsi, Nonlocal effects to neutron diffusion equation in a nuclear reactor, Journal of Computational and Theoretical Transport, vol. 49, no. 6, pp. 267-281, 2020.

    [11] R. A. El-Nabulsi, Neutrons diffusion variable coefficient advection in nuclear reactors, International Journal of Advanced Nuclear Reactor Design and Technology, vol. 3, pp. 102-107, 2021.

    [12] S. Ray, A. Patra, Application of homotopy analysis method and Adomian decomposition method for the solution of neutron diffusion equation in the hemisphere and cylindrical reactors, Journal of Nuclear Engineering and Technology, vol. 1, pp. 1–14, 2011.

    [13] A. Nahla, F. Al-Malki, M. Rokaya, Numerical Techniques for the Neutron Diffusion Equations in the Nuclear Reactors, Adv. Studies Theor. Phys., vol. 6, pp. 649–664, 2012.

    [14] S. M. Khaled, Exact solution of the one-dimensional neutron diffusion kinetic equation with one delayed precursor concentration in Cartesian geometry, AIMS Mathematics, vol. 7, no. 7, pp. 12364-12373, 2022.

    [15] J. S. Cassell, M. M. R. Williams, A solution of the neutron diffusion equation for a hemisphere with mixed boundary conditions, Annals of Nuclear Energy, vol. 31, pp. 1987–2004, 2004.

    [16] K. Khasawneh, S. Dababneh, Z. Odibat, A solution of the neutron diffusion equation in hemispherical symmetry using the homotopy perturbation method, Annals of Nuclear Energy, vol. 36, pp. 1711-1717, 2009.

    [17] A. Sood, R. Forster, D. Parsons, Analytical Benchmark Test Set for Criticality Code Verification, Los Alamos National Laboratory, 1999.

    [18] A. Burqan, M. Shqair, A. El-Ajou, S. M. E. Ismaeel, Z. Al-Zhour, Analytical solutions to the coupled fractional neutron diffusion equations with delayed neutrons system using Laplace transform method, AIMS Mathematics, vol. 8, no. 8, pp. 19297–19312, 2023.

    [19] M. Shqair, I. Ghabar, A. Burqan, Using Laplace residual power series method in solving coupled fractional neutron diffusion equations with delayed neutrons system, Fractal Fract., vol. 7, 219, 2023.

    [20] J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis, John Wiley, Sons, 1976.

    [21] J. R. Lamarsh, Introduction to Nuclear Engineering, Addison-Wesley, 1983.

    [22] M. Nairat, M. Shqair, T. Alhalholy, Cylindrically symmetric fractional Helmholtz equation, Appl. Math. E-Notes, vol. 19, pp. 708-717, 2019.

    [23] I. M. Batiha, A. Bataihah, A. Al-Nana, S. Alshorm, I. H. Jebril, A. Zraiqat, A numerical scheme for dealing with fractional initial value problem, International Journal of Innovative Computing, Information and Control, vol. 19, no. 3, pp. 763-774, 2023.

    [24] I. M. Batiha, S. Alshorm, I. H. Jebril, M. A. Hammad, A brief review about fractional calculus, Int. J. Open Problems Compt. Math., vol. 15, no. 4, pp. 39-56, 2022.

    [25] I. M. Batiha, S. Alshorm, A. Al-Husban, R. Saadeh, G. Gharib, S. Momani, The n-point composite fractional formula for approximating Riemann–Liouville integrator, Symmetry, vol. 15, no. 4, 938, 2023.

    [26] T. Hamadneh, A. Abbes, I. Abu Falahah, Y. A. AL-Khassawneh, A. S. Heilat, A. Al-Husban, A. Ouannas, Complexity and chaos analysis for two-dimensional discrete-time predator–prey Leslie–Gower model with fractional orders, Axioms, vol. 12, no. 6, 561, 2023.

    [27] I. M. Batiha, Z. Chebana, T. Oussaeif, A. Ouannas, S. Alshorm, A. Zraiqat, Solvability and dynamics of superlinear reaction diffusion problem with integral condition, IAENG International Journal of Applied Mathematics, vol. 53, no. 1, pp. 1-9, 2023.

    [28] A. Dababneh, A. Zraiqat, A. Farah, H. Al-Zoubi, M. Abu Hammad, Numerical methods for finding periodic solutions of ordinary differential equations with strong nonlinearity, J. Math. Comput. Sci., vol. 11, no. 6, pp. 6910-6922, 2021.

    [29] I. M. Batiha, A. Benguesmia, T. E. Oussaeif, I. H. Jebril, A. Ouannas, S. Momani, Study of a superlinear problem for a time fractional parabolic equation under integral over-determination condition, IAENG International Journal of Applied Mathematics, vol. 54, no. 2, pp. 187-193, 2024.

    [30] I. M. Batiha, N. Allouch, I. H. Jebril, S. Momani, A robust scheme for reduction of higher fractional-order systems, Journal of Engineering Mathematics, vol. 144, no. 1, 4, 2024.

    [31] I. M. Batiha, I. H. Jebril, S. Alshorm, M. Aljazzazi, S. Alkhazaleh, Numerical approach for solving incommensurate higher-order fractional differential equations, Nonlinear Dynamics and Systems Theory, vol. 24, no. 2, 123, 2024.

    [32] I. M. Batiha, I. H. Jebril, S. Alshorm, A. A. Al-Nana, S. Alkhazaleh, S. Momani, Handling systems of fractional stochastic differential equations using modified fractional Euler method, Global & Stochastic Analysis, vol. 11, no. 1, pp. 95-105, 2024.

    [33] A. A. Kilbas, Theory and Application of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

    [34] L. Beghina, M. Caputo, Commutative and associative properties of the Caputo fractional derivative and its generalizing convolution operator, Commun. Nonlinear Sci. Numer. Simulat., vol. 89, 105338, 2020.

    [35] Z. M. Odibat, S. Momani, An algorithm for the numerical solution of differential equations of fractional order, Journal of Applied Mathematics & Informatics, vol. 26, no. 1-2, pp. 15-27, 2008.

    [36] J. L. Schiff, The Laplace Transform: Theory and Applications, Springer-Verlag, New York Inc, 1999.

    Cite This Article As :
    Shqair, Mohammed. , M., Iqbal. , H., Mohammed. , Alshorm, Shameseddin. , Abdelnebi, Amira. , H., Iqbal. , A., S.. Numerical Solutions for Fractional Multi-Group Neutron Diffusion System of Equations. International Journal of Neutrosophic Science, vol. , no. , 2024, pp. 08-38. DOI: https://doi.org/10.54216/IJNS.240401
    Shqair, M. M., I. H., M. Alshorm, S. Abdelnebi, A. H., I. A., S. (2024). Numerical Solutions for Fractional Multi-Group Neutron Diffusion System of Equations. International Journal of Neutrosophic Science, (), 08-38. DOI: https://doi.org/10.54216/IJNS.240401
    Shqair, Mohammed. M., Iqbal. H., Mohammed. Alshorm, Shameseddin. Abdelnebi, Amira. H., Iqbal. A., S.. Numerical Solutions for Fractional Multi-Group Neutron Diffusion System of Equations. International Journal of Neutrosophic Science , no. (2024): 08-38. DOI: https://doi.org/10.54216/IJNS.240401
    Shqair, M. , M., I. , H., M. , Alshorm, S. , Abdelnebi, A. , H., I. , A., S. (2024) . Numerical Solutions for Fractional Multi-Group Neutron Diffusion System of Equations. International Journal of Neutrosophic Science , () , 08-38 . DOI: https://doi.org/10.54216/IJNS.240401
    Shqair M. , M. I. , H. M. , Alshorm S. , Abdelnebi A. , H. I. , A. S. [2024]. Numerical Solutions for Fractional Multi-Group Neutron Diffusion System of Equations. International Journal of Neutrosophic Science. (): 08-38. DOI: https://doi.org/10.54216/IJNS.240401
    Shqair, M. M., I. H., M. Alshorm, S. Abdelnebi, A. H., I. A., S. "Numerical Solutions for Fractional Multi-Group Neutron Diffusion System of Equations," International Journal of Neutrosophic Science, vol. , no. , pp. 08-38, 2024. DOI: https://doi.org/10.54216/IJNS.240401