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Abstract

This paper addresses fractional-order versions of multi-group neutron diffusion systems of equations, focusing
on two numerical solutions. First, it employs the Laplace transform method to solve the classical version of
multi-group neutron diffusion equations. Subsequently, it transforms these equations into their corresponding
fractional-order versions using the Caputo differentiator. To handle the resultant fractional-order system, a
novel approach is introduced to reduce it from a system of 2α-order to a system of α-order. This converted
system is then solved using the so-called Modified Fractional Euler Method (MFEM). As far as we know,
this is the first time that such numerical schemes have been used to deal with the systems at hand. The paper
covers the multi-group neutron diffusion equations in spherical, cylindrical, and slab reactors, all solved and
converted for verification purposes.

Keywords: multi-group neutron diffusion equations; Laplace transform method; fractional calculus; modified
fractional Euler method.

1 Introduction

The dispersion of neutrons within the reactor are one of the fundamental processes that control how the core
of a nuclear reactor behaves. The neutron balancing equation, often known as the neutron transport equation,
is the foundation for the mathematical description of a neutron distribution. In truth, the transport equation
is complex and the only physical models for which accurate solutions have been obtained thus far.1, 2 The
neutron transport equation can be simplified into neutron diffusion equations using Fick’s law. These equations
describe the various velocities of neutrons in a reactor and categorize them by energy levels to model neutron
behavior.3–8 In multi-group neutron diffusion equations, the influence of multiple energy-level interactions
on neutron behavior is considered. Solving these equations allows engineers to ensure reactor criticality,
maintaining a controlled and self-sustaining chain reaction within the nuclear reactor.9–13 Factors such as fuel
composition, reactor design, and control rod positions are considered for a comprehensive understanding and
regulation of the process.14–19

https://doi.org/10.54216/IJNS.240401
Received: September 25, 2023 Revised: February 19, 2024 Accepted: May 07, 2024

8



International Journal of Neutrosophic Science (IJNS) Vol. 24, No. 04, PP. 08-38, 2024

In nuclear reactor physics, cross-sections are fundamental for assessing the likelihood of specific nuclear
reactions. Cross-section (σ) represents the effective size of a target nucleus, indicating the probability of
nuclear interactions when particles like neutrons interact with nuclei. Various types of nuclear processes have
associated cross-sections. Fission Cross Section (σf ) measures the likelihood of a nucleus splitting when
interacting with a neutron. It’s crucial for understanding and controlling nuclear fission, the process where a
heavy nucleus breaks into lighter nuclei, releasing energy and additional neutrons. Another important cross-
section is the absorption cross-section (σa) which indicates the probability of a nucleus absorbing a neutron
without undergoing fission. Neutron capture by the nucleus, explained by the absorption cross-section, leads to
the creation of heavier isotopes, or initiates different nuclear processes. This process is essential for regulating
reactor reactivity and neutron populations. Additionally, the radiative capture cross-section (σy) quantifies the
probability of a nucleus capturing a neutron and then emitting a gamma-ray photon. This process occurs when
a nucleus absorbs a neutron and transitions to a higher energy state, releasing energy in the form of gamma-ray
radiation. In a nuclear reactor, radiation capture plays a crucial role in both the creation of radioactive isotopes
and the generation of energy, significantly impacting reactor operations and outcomes.20, 21

This study initially presents an approach utilizing the Laplace Transform Method (LTM) to offer a numerical
solution for the classical multi-group neutron diffusion equations in various geometric shapes, including slab,
cylindrical, and spherical configurations. The LTM is an efficient method that enables the solution of these
equations without the need for discretization, perturbation, or linearization techniques. Instead, it constructs
an approximate, practical and effective solution for addressing complex neutron diffusion problems. Also, this
paper employs techniques to convert higher-order differential equations into first-order ones in the context of
Fractional Differential Equations (FDEs). The process involves introducing new variables and transforming
the equation into a system of interconnected α-order differential equations, where 0 < α ≤ 1. The transformed
α-order system can then be tackled with one of powerful methods for dealing with fractional-order systems,
called the Modified Fractional Euler Method (MFEM). A recent advancement, the MFEM, has shown efficacy
in solving systems with fractional calculus of order α. This paper employs MFEM to address fractional multi-
group neutron diffusion equations.22–28

2 Preliminary concepts

In this section, we will introduce fundamental definitions and theorems related to fractional calculus, including
the Riemann-Liouville integral and derivative, the Caputo derivative and other relevant concepts.29–3224, 33 The
fractional Riemann-Liouville integral of a function f of order α > 0 is initially defined by

Jαf(t) =
1

Γ(α)

∫ t

0

f(τ)(t− τ)α−1 dτ, t > 0, α > 0. (1)

Some of the properties of the Riemann-Liouville integral are given below for completeness:24, 33

J0f(t) = f(t). (2)

Jα(t− a)γ =
Γ(γ + 1)

Γ(α+ γ + 1)
(t− a)α+γ , γ ≥ −1, a ∈ R. (3)

JαJβf(t) = JβJαf(t), α, β ≥ 0. (4)

JαJβf(t) = Jα+βf(t), α, β ≥ 0. (5)

24, 33 Let m be the smaller number greater than α. The Caputo fractional derivative of order α > 0 is defined
as

Dαf(t) =


1

Γ(m−α)

∫ t

0
(t− τ)−α+m−1 dmf(τ)

dτm dτ, m− 1 < α < m,

dmf(t)
dtm , α = m,

(6)

where m ∈ N, t > 0 and f is a real-valued function. Some of the characteristics of the Caputo derivative are
listed below:33

1. Dαc = 0, where c is constant.
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2. For a ∈ R we have

Dα(t− a)ρ =

{
Γ(ρ+1)

Γ(ρ−α+1) (t− a)ρ−α, ρ > α− 1,

0, otherwise.
(7)

3. Dα is a linear operator, i.e.,

Dα(µf(t) + ωk(t)) = µDαf(t) + ωDαk(t),

where µ and ω are constants.

4. The semigroup property holds,34 i.e.

DαDβf(t) = Dα+βf(t), (8)

under the additional assumption that f (1)(0) = 0 in the case α+ β > 1.

In addition, we need to recall the following basic property. If m− 1 < α ≤ m, m ∈ N∗, then we have

JαDαf(t) = f(t)−
m∑
i=1

f i(0+)
ti

i!
, t > 0. (9)

Theorem 2.1. 35 [Generalized Taylor’s formula] Suppose that Dkαf(x) ∈ C(0, b] for k = 0, 1, 2, · · · , n+1,
where 0 < α ≤ 1. Then we can expand the function f about the node x0 as follows:

f(x) =

n∑
i=0

(x− x0)
iα

Γ(iα+ 1)
(Diαf)(x0) +

(x− x0)
(n+1)α

Γ((n+ 1)α+ 1)
(D(n+1)αf)(ξ), (10)

with 0 < ξ < x, ∀x ∈ (0, b].

36 Let function f be defined on [0,∞). Then Laplace transform L {f} is another function F (s), which is
defined as

F (s) = L {f} :=

∫ ∞

0

e−stf(t)dt. (11)

Remark 2.2. Some properties of Laplace transform are listed below for completeness:36

L {ty} = − d

ds
L {y}.

L {f ′(t)} = −f(0+) + sL {f} = sF (s)− f(0+).

L {f ′′(t)} = s2F (s)− sf(0+)− f ′(0+).

3 Theoretical framework on multi-group neutron diffusion system

In this section, we intend first to recall the general form of the multi-group neutron diffusion system. Then we
will convert this system of multi-group neutron diffusion system into its fractional-order form.
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3.1 Classical form of multi-group neutron diffusion system

It is assumed that the multi-group neutron diffusion equations system has a single solution in the interval of
integration with the following form:6, 20

∇2ϕ1(r) + C11ϕ1(r) + C12ϕ2(r) + C13ϕ3(r) + · · ·+ C1nϕn(r) = 0,

∇2ϕ2(r) + C21ϕ1(r) + C22ϕ2(r) + C23ϕ3(r) + · · ·+ C2nϕn(r) = 0,

∇2ϕ3(r) + C31ϕ1(r) + C32ϕ2(r) + C33ϕ3(r) + · · ·+ C3nϕn(r) = 0,

...

∇2ϕn(r) + Cn1ϕ1(r) + Cn2ϕ2(r) + Cn3ϕ3(r) + · · ·+ Cnnϕn(r) = 0,

(12)

for which the constants Cii, Cij and Di are defined as follows:

Cii =
xivi

∑n
i=1 fi −

(∑n
i=1 γi +

∑n
i=1

∑n
j=1 sij

)
Di

,

Cij =

∑n
i=1

∑
j=1 sij + xivj

∑n
i=1 fi

Di
,

Di =
1

3
(∑n

i=1 fi +
∑n

i=1 sii +
∑n

i=1

∑
j=1 sij +

∑n
i=1 γi

) ,
(13)

where Di is a group diffusion coefficient and γi is the macroscopic radiative capture cross-section, which rep-
resents the probability of a nucleus capturing a neutron and emitting a gamma-ray photon. Herein, the function
ϕi(r) is assumed to be an analytic function for adapting some essential needs, especially the semigroup prop-
erty reported in (8), for i = 1, 2, 3, · · · , n.

The constants in (13) are typically defined in terms of different macroscopic cross-sections, the number of
neutrons produced per fission for each group (vi), and the fraction of fission neutrons that are emitted with
energies in the ith-group (xi). The above system of equations describes the behavior of the neutrons in nuclear
reactors where each flux ϕi expresses the neutron flux with a specific speed. Each flux reaches its maximum
at the center of the reactor; its derivative vanishes, so the initial conditions can be written as

ϕi(0) = hi, ϕ
′

i(0) = 0, i = 1, 2, · · · , n, (14)

where the fluxes ϕi(r) are functions of independent variable r and hi ∈ R, ∀i = 1, 2, · · · , n. Throughout
this work, it is assumed that ϕi(r) are analytic functions for r ≥ 0, ∀i = 1, 2, · · · , n. The multi-group
time-independent neutron diffusion system have three nuclear reactor essential geometries, namely spherical,
cylindrical and slab reactors which will be studied respectively. In the following content, we will discuss these
three cases in terms of finding their solutions by using LTM.

3.1.1 Multi-group neutron diffusion system in spherical reactor

A type of nuclear reactor design known as a multi-group neutron diffusion system in spherical reactor (MG-SR)
makes use of several energy groups to simulate the behavior of neutrons inside the reactor core. It is a variant
of reactor analysis’s more widely used multi-group neutron diffusion theory. The energy spectrum of neutrons
in a MEG-SR is split into a number of distinct energy groups. A set of diffusion equations approximates
the neutron behavior inside each energy group, which represents a particular range of neutron energies. The
multi-group neutron diffusion system in spherical reactor can be express as

rϕ
′′

1 (r) + 2ϕ
′

1(r) + rC11ϕ1(r) + rC12ϕ2(r) + rC13ϕ3(r) + · · ·+ rC1nϕn(r) = 0

rϕ
′′

2 (r) + 2ϕ
′

2(r) + rC21ϕ1(r) + rC22ϕ2(r) + rC23ϕ3(r) + · · ·+ rC2nϕn(r) = 0

rϕ
′′

3 (r) + 2ϕ
′

3(r) + rC31ϕ1(r) + rC32ϕ2(r) + rC33ϕ3(r) + · · ·+ rC3nϕn(r) = 0

...

rϕ
′′

n(r) + 2ϕ
′

n(r) + rCn1ϕ1(r) + rCn2ϕ2(r) + rCn3ϕ3(r) + · · ·+ rCnnϕn(r) = 0,

(15)
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with the following initial conditions:

ϕi(0
+) = ai, i = 1, 2, · · · , n.

ϕ
′

i(0
+) = bi, i = 1, 2, · · · , n.

(16)

To deal with such a system with the use of LTM, we take the Laplace transform of the both sides of the above
system to get

L (rϕ
′′

1 (r)) + 2L (ϕ
′

1(r))) + C11L (rϕ1(r)) + C12L (rϕ2(r)) + · · ·+ C1nL (rϕn(r)) = 0,

L (rϕ
′′

2 (r)) + 2L (ϕ
′

2(r))) + C21L (rϕ1(r)) + C22L (rϕ2(r)) + · · ·+ C2nL (rϕn(r)) = 0,

L (rϕ
′′

3 (r)) + 2L (ϕ
′

3(r))) + C31L (rϕ1(r)) + C32L (rϕ2(r)) + · · ·+ C3nL (rϕn(r)) = 0,

...

L (rϕ
′′

n(r)) + 2L (ϕ
′

n(r))) + Cn1L (rϕ1(r)) + Cn2L (rϕ2(r)) + · · ·+ CnnL (rϕn(r)) = 0.

(17)

By using Remark 2.2, we can get

−d

ds
(s2L {ϕ1(r)} − sϕ1(0

+)− ϕ
′

1(0
+)) + 2(sL {ϕ1(r)} − ϕ1(0

+)) + C11(
−d

ds
L {ϕ1(r)})

+ C12(
−d

ds
L {ϕ2(r)}) + C13(

−d

ds
L {ϕ3(r)}) + · · ·+ C1n(

−d

ds
L {ϕn(r)}) = 0,

−d

ds
(s2L {ϕ2(r)} − sϕ2(0

+)− ϕ
′

2(0
+)) + 2(sL {ϕ2(r)} − ϕ2(0

+)) + C21(
−d

ds
L {ϕ1(r)})

+ C22(
−d

ds
L {ϕ2(r)}) + C23(

−d

ds
L {ϕ3(r)}) + · · ·+ C2n(

−d

ds
L {ϕn(r)}) = 0,

−d

ds
(s2L {ϕ3(r)} − sϕ3(0

+)− ϕ
′

3(0
+)) + 2(sL {ϕ3(r)} − ϕ3(0

+)) + C31(
−d

ds
L {ϕ1(r)})

+ C32(
−d

ds
L {ϕ2(r)}) + C33(

−d

ds
L {ϕ3(r)}) + · · ·+ C3n(

−d

ds
L {ϕn(r)}) = 0

...
−d

ds
(s2L {ϕn(r)} − sϕn(0

+)− ϕ
′

n(0
+)) + 2(sL {ϕn(r)} − ϕn(0

+)) + Cn1(
−d

ds
L {ϕ1(r)})

+ Cn2(
−d

ds
L {ϕ2(r)}) + Cn3(

−d

ds
L {ϕ3(r)}) + · · ·+ Cnn(

−d

ds
L {ϕn(r)}) = 0.

(18)

With the help of assuming L {ϕi(r)}) = Ti(s), for all i = 1, 2, · · · , n, we get:

−d

ds
(s2T1(s)− a1s− b1) + 2(sT1(s)− a1)− C11T

′

1(s)− C12T
′

2(s)− C13T
′

3(s)− · · · − C1nT
′

n(s) = 0,

−d

ds
(s2T2(s)− a2s− b2) + 2(sT2(s)− a2)− C21T

′

1(s)− C22T
′

2(s)− C23T
′

3(s)− · · · − C2nT
′

n(s) = 0,

−d

ds
(s2T3(s)− a3s− b3) + 2(sT3(s)− a3)− C31T

′

1(s)− C32T
′

2(s)− C33T
′

3(s)− · · · − C3nT
′

n(s) = 0,

...
−d

ds
(s2Tn(s)− ans− bn) + 2(sTn(s)− an)− Cn1T

′

1(s)− Cn2T
′

2(s)− Cn3T
′

3(s)− · · · − CnnT
′

n(s) = 0.

(19)
By simplifying the previous system (19), we get

− (s2 + C11)T
′

1(s)− C12T
′

2(s)− C13T
′

3(s)− · · · − C1nT
′

n(s) = a1,

− C21T
′

1(s)− (s2 + C22)T
′

2(s)− C23T
′

3(s)− · · · − C2nT
′

n(s) = a2,

− C31T
′

1(s)− C32T
′

2(s)− (s2 + C33)T
′

3(s)− · · · − C3nT
′

n(s) = a3,

...

− Cn1T
′

1(s)− Cn2T
′

2(s)− Cn3T
′

3(s)− · · · − (s2 + Cnn)T
′

n(s) = an.

(20)
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The matrix general form is then as follows:
−(s2 + C11)− C12 − C13 − · · · − C1n

−C21 − (s2 + C22)− C23 − · · · − C2n

−C31 − C32 − (s2 + C33)− · · · − C3n

...
−Cn1 − Cn2 − Cn3 − · · · − (s2 + Cnn)




T

′

1(s)

T
′

2(s)

T
′

3(s)
...

T
′

n(s)

 =


a1
a2
a2
...
an

 . (21)

Note that A(s), T and K are defined as follow:

A(s) =


−(s2 + C11)− C12 − C13 − · · · − C1n

−C21 − (s2 + C22)− C23 − · · · − C2n

−C31 − C32 − (s2 + C33)− · · · − C3n

...
−Cn1 − Cn2 − Cn3 − · · · − (s2 + Cnn)

 , T
′
(s) =


T

′

1(s)

T
′

2(s)

T
′

3(s)
...

T
′

n(s)

 ,K =


a1
a2
a2
...
an

 . (22)

By using the previous assumptions, we can write system (21) as A(s)T
′
(s) = K. Also, if A(s) is invertible,

we can write it as follow
T

′
(s) = A−1(s)K. (23)

System (23) can be then solved numerically by using a prepared MATLAB code with noting that ϕi(r) =
L −1{Ti(s)}, for all i = 1, 2, · · · , n. This would give the solution ϕi(r) of system (15). In fact, such a
system’s solution makes it evident that the scheme provided to generate system (23) is convergent, and this
what we will see in Section 4. In particular, if the functions Ti(s) have Laplace transforms ϕi(r), for all
i = 1, 2, · · · , n, then for the inverse Laplace transform to exist, the integral

ϕi(r) =
1

2πj
lim

N→inf

∫ δ+jN

δ−jN

T (s)estds

must converge, where δ is a real constant such that the contour of integration lies to the right of all singularities
T (s).

3.1.2 Multi-group neutron diffusion system in cylindrical reactor

The multi-group neutron diffusion system in a cylindrical reactor will be solved here by using LTM as well.
Such a system has the form

rϕ
′′

1 (r) + ϕ
′

1(r) + r

(
C11ϕ1(r) + C12ϕ2(r) + C13ϕ3(r) + · · ·+ C1nϕn(r)

)
= 0,

rϕ
′′

2 (r) + ϕ
′

2(r) + r

(
C21ϕ1(r) + C22ϕ2(r) + C23ϕ3(r) + · · ·+ C2nϕn(r)

)
= 0,

rϕ
′′

3 (r) + ϕ
′

3(r) + r

(
C31ϕ1(r) + C32ϕ2(r) + C33ϕ3(r) + · · ·+ C3nϕn(r)

)
= 0,

...

rϕ
′′

n(r) + ϕ
′

n(r) + r

(
Cn1ϕ1(r) + Cn2ϕ2(r) + Cn3ϕ3(r) + · · ·+ Cnnϕn(r)

)
= 0,

(24)

with the following initial conditions:

ϕi(0
+) = ai, ϕ

′

i(0
+) = bi, for all i = 1, 2, · · · , n. (25)
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By taking the Laplace transform of the both sides of the above system and by using the same manner of the
spherical case, we obtain

− (s2 + C11)T
′

1(s)− C12T
′

2(s)− C13T
′

3(s)− · · · − C1nT
′

n(s) = sT1(s),

− C21T
′

1(s)− (s2 + C22)T
′

2(s)− C23T
′

3(s)− · · · − C2nT
′

n(s) = sT2(s),

− C31T
′

1(s)− C32T
′

2(s)− (s2 + C33)T
′

3(s)− · · · − C3nT
′

n(s) = sT3(s),

...

− Cn1T
′

1(s)− Cn2T
′

2(s)− Cn3T
′

3(s)− · · · − (s2 + Cnn)T
′

n(s) = sTn(s).

(26)

The matrix general form will then be as follows:
−(s2 + C11)− C12 − C13 − · · · − C1n

−C21 − (s2 + C22)− C23 − · · · − C2n

−C31 − C32 − (s2 + C33)− · · · − C3n

...
−Cn1 − Cn2 − Cn3 − · · · − (s2 + Cnn)




T

′

1(s)

T
′

2(s)

T
′

3(s)
...

T
′

n(s)

 = s


T1(s)
T2(s)
T3(s)

...
Tn(s)

 . (27)

Note that A(s), T
′
(s) and T (s) will be defined as follow:

A(s) =


−(s2 + C11)− C12 − C13 − · · · − C1n

−C21 − (s2 + C22)− C23 − · · · − C2n

−C31 − C32 − (s2 + C33)− · · · − C3n

...
−Cn1 − Cn2 − Cn3 − · · · − (s2 + Cnn)

 , T
′
(s) =


T

′

1(s)

T
′

2(s)

T
′

3(s)
...

T
′

n(s)

 , T (s) =


T1(s)
T2(s)
T3(s)

...
Tn(s)

 . (28)

By using the previous assumptions, we can then write system (27) as A(s)T
′
(s) = sT (s). Also, if A(s) is

invertible, we can then write it as follow:

T
′
(s) = sA−1(s)T (s). (29)

System (29) can be then solved numerically by using a prepared MATLAB code with noting that ϕi(r) =
L −1{Ti(s)}, for all i = 1, 2, · · · , n. This would give the solution ϕi(r) of system (24). This system is
regarded as a homogeneous linear system with coefficient variables. The solution of system (29) is of the
form:

T (s) = ϕ(s)C, (30)

where C is an n-dimensional vector consisting of arbitrary numbers. Note that ϕ(s) defined as follow:

ϕ(s) = e
∫ s
0
τA(τ)dτ . (31)

Consequently, we get Ti(s) = L (ϕi(r)), for all i = 1, 2, · · · , n. Also, we can find ϕi(r) = L −1(Ti(s), for
all i = 1, 2, · · · , n, which represents the desired solution of system (24).

3.1.3 Multi-group neutron diffusion system in slab reactor

The multi-group of neutrons diffusion system in slab reactor has the form

ϕ
′′

1 (r) + C11ϕ1(r) + C12ϕ2(r) + C13ϕ3(r) + · · ·+ C1nϕn(r) = 0

ϕ
′′

2 (r) + C21ϕ1(r) + C22ϕ2(r) + C23ϕ3(r) + · · ·+ C2nϕn(r) = 0

ϕ
′′

3 (r) + C31ϕ1(r) + C32ϕ2(r) + C33ϕ3(r) + · · ·+ C3nϕn(r) = 0

...

ϕ
′′

n(r) + Cn1ϕ1(r) + Cn2ϕ2(r) + Cn3ϕ3(r) + · · ·+ Cnnϕn(r) = 0,

(32)
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with the following initial conditions:

ϕi(0
+) = ai, ϕ

′

i(0
+) = bi, for all i = 1, 2, · · · , n. (33)

By taking the Laplace transform of the both sides of the above system and by using the same manner of the
spherical case, we get

s2T1(s)− a1s− b1 + C11T1s+ C12T2s+ C13T3s+ · · ·+ C1nTns = 0,

s2T2(s)− a2s− b2 + C21T1s+ C22T2s+ C23T3s+ · · ·+ C2nTns = 0,

s2T3(s)− a3s− b3 + C31T1s+ C32T2s+ C33T3s+ · · ·+ C3nTns = 0,

...

s2Tn(s)− ans− bn + Cn1T1s+ Cn2T2s+ Cn3T3s+ · · ·+ CnnTns = 0.

(34)

In a similar manner to the previous subsections, the above system can be solved in frequency domain and
then we can obtain the desired solution ϕi(r) = L −1(Ti(s)) in the true domain by using MATLAB, for
i = 1, 2, · · · , n.

3.2 Fractional-order form of multi-group neutron diffusion system

In this subsection, we will introduce the fractional-order version of multi-group neutron diffusion equations
(12). For this purpose, it should be first noted that ∇2ϕi(r) can be defined as follow:

∇2ϕi(r) = ϕ
′′

i (r) +
a

r
ϕ

′

i(r), (35)

for every i = 1, · · · , n. Now, in view of (35), and by operating the Caputo differentiator on system (12), we
obtain the following system:

D2αϕ1(r) +
a

r
Dαϕ1(r) + C11ϕ1(r) + C12ϕ2(r) + C13ϕ3(r) + · · ·+ C1nϕn(r) = 0,

D2αϕ2(r) +
a

r
Dαϕ2(r) + C21ϕ1(r) + C22ϕ2(r) + C23ϕ3(r) + · · ·+ C2nϕn(r) = 0,

D2αϕ3(r) +
a

r
Dαϕ3(r) + C31ϕ1(r) + C32ϕ2(r) + C33ϕ3(r) + · · ·+ C3nϕn(r) = 0,

...

D2αϕn(r) +
a

r
Dαϕn(r) + Cn1ϕ1(r) + Cn2ϕ2(r) + Cn3ϕ3(r) + · · ·+ Cnnϕn(r) = 0.

(36)

Herein, the MFEM might be employed to find an approximate solution to the multi-group time-independent
neutron diffusion system of equations (36) for three nuclear reactor essential geometries, namely spherical,
cylindrical and slab reactors which will be studied based on the value of the parameter a, that it when a = 2,
a = 1 and a = 0, respectively. But before dealing with this aim, we state and prove the next important result.

3.2.1 Reduction nα-FDE to α-system of FDEs

In this part, we aim to reduce the FDE of order nα to a system of FDEs of order α, where 0 < α ≤ 1. For this
purpose, we provide the next lemma.

Lemma 3.1. Any FDE of order nα, n ∈ Z+ and α ∈ (0, 1], with functions possessing values in R, can be
converted into a system of FDEs of order α with values in Rnd.

Proof. To prove this result, we should first take the scalar case that takes place whenever d = 1 and then we
will consider the remaining case that is hold when d > 1. For this reason, we should note that the general form
of the FDE of order nα in its scaler case can be given by

Dnαy(t) = G(t, y(t), Dαy(t), D2αy(t), · · · , D(n−1)αy(t)), (37)
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where G is a continuous function defined on the subset I × R× R× · · · × R so that it takes values in R for a
given intend I . Now, define the function

Ψ(t, v0, v1, · · · , vn−1) = (v1, v2, · · · , G(t, v0, v1, · · · , vn−1)) (38)

as a continuous function defined on I ×R×R× · · · ×R as G, but it takes the values in Rn. In this regard, we
consider the following equation:

DαY(t) = Ψ(t,Y(t)), for t ∈ I. (39)

Now, we want to show that x : I → R is a solution of equation (38) if and only if the function

X :I → Rn,

t → (x(t), Dαx(t), D2αx(t), · · · , D(n−1)αx(t)),
(40)

is a solution of equation (39). To this end, we assume that x is a solution to equation (38) such that X is
defined above. Then we have

DαX(t) =


Dαx(t)
D2αx(t)

...
D(n−1)αx(t)
Dnαx(t)

 =


Dαx(t)
D2αx(t)

...
D(n−1)αx(t)

G(t, x(t), Dαx(t), D2αx(t), · · · , D(n−1)αx(t))

 = Ψ(t,X(t)). (41)

Herein, the converse of the above discussion is similar. Now, for the case of d > 1, one can reread the above
proof again, and substitute each occurrence of R by Rd to get the result.

3.2.2 Fractional multi-group neutron diffusion system in spherical reactor

In this subsection, we will propose a fractional-order version of multi-group neutron diffusion system in a
spherical reactor, and then obtain its numerical solution using Lemma 3.1 and the MFEM.23 In fact, system
(15) can be expressed in the fractional-order case as follows:

rD2αϕ1(r) + 2Dαϕ1(r) + rC11ϕ1(r) + rC12ϕ2(r) + rC13ϕ3(r) + · · ·+ rC1nϕn(r) = 0,

rD2αϕ2(r) + 2Dαϕ2(r) + rC21ϕ1(r) + rC22ϕ2(r) + rC23ϕ3(r) + · · ·+ rC2nϕn(r) = 0,

rD2αϕ3(r) + 2Dαϕ3(r) + rC31ϕ1(r) + rC32ϕ2(r) + rC33ϕ3(r) + · · ·+ rC3nϕn(r) = 0,

...

rD2αϕn(r) + 2Dαϕn(r) + rCn1ϕ1(r) + rCn2ϕ2(r) + rCn3ϕ3(r) + · · ·+ rCnnϕn(r) = 0.

(42)

This system can be defined also by

D2αϕ1(r) = −
(
2

r
Dαϕ1(r) + C11ϕ1(r) + C12ϕ2(r) + C13ϕ3(r) + · · ·+ C1nϕn(r)

)
,

D2αϕ2(r) = −
(
2

r
Dαϕ2(r) + C21ϕ1(r) + C22ϕ2(r) + C23ϕ3(r) + · · ·+ C2nϕn(r)

)
,

D2αϕ3(r) = −
(
2

r
Dαϕ3(r) + C31ϕ1(r) + C32ϕ2(r) + C33ϕ3(r) + · · ·+ C3nϕn(r)

)
,

...

D2αϕn(r) = −
(
2

r
Dαϕn(r) + Cn1ϕ1(r) + Cn2ϕ2(r) + Cn3ϕ3(r) + · · ·+ Cnnϕn(r)

)
.

(43)
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Now, suppose that

f1(r, ϕ1, ϕ2, ϕ3, · · · , ϕn, D
αϕ1)

= −
(
2

r
Dαϕ1(r) + C11ϕ1(r) + C12ϕ2(r) + C13ϕ3(r) + · · ·+ C1nϕn(r)

)
,

f2(r, ϕ1, ϕ2, ϕ3, · · · , ϕn, D
αϕ2)

= −
(
2

r
Dαϕ2(r) + C21ϕ1(r) + C22ϕ2(r) + C23ϕ3(r) + · · ·+ C2nϕn(r)

)
,

f3(r, ϕ1, ϕ2, ϕ3, · · · , ϕn, D
αϕ3)

= −
(
2

r
Dαϕ3(r) + C31ϕ1(r) + C32ϕ2(r) + C33ϕ3(r) + · · ·+ C3nϕn(r)

)
,

...
fn(r, ϕ1, ϕ2, ϕ3, · · · , ϕn, D

αϕn)

= −
(
2

r
Dαϕn(r) + Cn1ϕ1(r) + Cn2ϕ2(r) + Cn3ϕ3(r) + · · ·+ Cnnϕn(r)

)
.

(44)

Then, system (43) becomes

D2αϕ1(r) = f1(r, ϕ1, ϕ2, ϕ3, · · · , ϕn, D
αϕ1),

D2αϕ2(r) = f2(r, ϕ1, ϕ2, ϕ3, · · · , ϕn, D
αϕ2),

D2αϕ3(r) = f3(r, ϕ1, ϕ2, ϕ3, · · · , ϕn, D
αϕ3),

...

D2αϕn(r) = fn(r, ϕ1, ϕ2, ϕ3, · · · , ϕn, D
αϕn).

(45)

If one assumes that ui = Dαϕi(r), for all i = 1, 2, · · · , n, we obtain

Dαϕ1(r) = u1 = g1(r, ϕ1, ϕ2, ϕ3, · · · , ϕn, u1),

Dαu1 = D2αϕ1(r) = f1(r, ϕ1, ϕ2, ϕ3, · · · , ϕn, u1),

Dαϕ2(r) = u2 = g2(r, ϕ1, ϕ2, ϕ3, · · · , ϕn, u2),

Dαu2 = D2αϕ2(r) = f2(r, ϕ1, ϕ2, ϕ3, · · · , ϕn, u2),

Dαϕ3(r) = u3 = g3(r, ϕ1, ϕ2, ϕ3, · · · , ϕn, u3),

Dαu3 = D2αϕ3(r) = f3(r, ϕ1, ϕ2, ϕ3, · · · , ϕn, u3),

...
Dαϕn(r) = un = gn(r, ϕ1, ϕ2, ϕ3, · · · , ϕn, un),

Dαun = D2αϕn(r) = fn(r, ϕ1, ϕ2, ϕ3, · · · , ϕn, un),

(46)

with the following initial conditions:

ϕi(0
+) = ai, ui(0

+) = bi, for all i = 1, 2, · · · , n. (47)

It should be noted here that the above system represents a fractional-order system consisting of 2n fractional
differential equations each of them is of order α. To solve this system, we shall use the MFEM. This can be
carried out by first dividing the interval I = [0+, T ] as 0+ = t0 < t1 = t0 + h < t2 = t0 + 2h < · · · <
tn = t0 + nh = T such that the mesh point are ti = t0 + ih, i = 1, 2, · · · , n, with step size h = T/n. For
simplicity, we denote gi(t, r, ϕ1, ϕ2, · · · , ϕn, ui) and fi(t, r, ϕ1, ϕ2, · · · , ϕn, ui) by gi, fi respectively, for all
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i = 1, 2, · · · , n. Now, based on the main formula of the MFEM, we can obtain the following states:

ϕ1(ti+1) = ϕ1(ti) +
hα

Γ(α+ 1)
g1

(
ti +

hα

2Γ(α+ 1)
, ϕ1(ti) +

hα

2Γ(α+ 1)
g1, ϕ2(ti) +

hα

2Γ(α+ 1)
g2, · · · ,

ϕn(ti) +
hα

2Γ(α+ 1)
gn, u1(ti) +

hα

2Γ(α+ 1)
f1

)
,

u1(ti+1) = u1(ti) +
hα

Γ(α+ 1)
f1

(
ti +

hα

2Γ(α+ 1)
, ϕ1(ti) +

hα

2Γ(α+ 1)
g1, ϕ2(ti) +

hα

2Γ(α+ 1)
g2, · · · ,

ϕn(ti) +
hα

2Γ(α+ 1)
gn, u1(ti) +

hα

2Γ(α+ 1)
f1

)
,

ϕ2(ti+1) = ϕ2(ti) +
hα

Γ(α+ 1)
g2

(
ti +

hα

2Γ(α+ 1)
, ϕ1(ti) +

hα

2Γ(α+ 1)
g1, ϕ2(ti) +

hα

2Γ(α+ 1)
g2, · · · ,

ϕn(ti) +
hα

2Γ(α+ 1)
gn, u2(ti) +

hα

2Γ(α+ 1)
f2

)
,

u2(ti+1) = u2(ti) +
hα

Γ(α+ 1)
f2

(
ti +

hα

2Γ(α+ 1)
, ϕ1(ti) +

hα

2Γ(α+ 1)
g1, ϕ2(ti) +

hα

2Γ(α+ 1)
g2, · · · ,

ϕn(ti) +
hα

2Γ(α+ 1)
gn, u2(ti) +

hα

2Γ(α+ 1)
f2

)
,

ϕ3(ti+1) = ϕ3(ti) +
hα

Γ(α+ 1)
g3

(
ti +

hα

2Γ(α+ 1)
, ϕ1(ti) +

hα

2Γ(α+ 1)
g1, ϕ2(ti) +

hα

2Γ(α+ 1)
g2, · · · ,

ϕn(ti) +
hα

2Γ(α+ 1)
gn, u3(ti) +

hα

2Γ(α+ 1)
f3

)
,

u3(ti+1) = u3(ti) +
hα

Γ(α+ 1)
f3

(
ti +

hα

2Γ(α+ 1)
, ϕ1(ti) +

hα

2Γ(α+ 1)
g1, ϕ2(ti) +

hα

2Γ(α+ 1)
g2, · · · ,

ϕn(ti) +
hα

2Γ(α+ 1)
gn, u3(ti) +

hα

2Γ(α+ 1)
f3

)
,

...

ϕn(ti+1) = ϕn(ti) +
hα

Γ(α+ 1)
gn

(
ti +

hα

2Γ(α+ 1)
, ϕ1(ti) +

hα

2Γ(α+ 1)
g1, ϕ2(ti) +

hα

2Γ(α+ 1)
g2, · · · ,

ϕn(ti) +
hα

2Γ(α+ 1)
gn, un(ti) +

hα

2Γ(α+ 1)
fn

)
,

un(ti+1) = un(ti) +
hα

Γ(α+ 1)
f2

(
ti +

hα

2Γ(α+ 1)
, ϕ1(ti) +

hα

2Γ(α+ 1)
g1, ϕ2(ti) +

hα

2Γ(α+ 1)
g2, · · · ,

ϕn(ti) +
hα

2Γ(α+ 1)
gn, un(ti) +

hα

2Γ(α+ 1)
fn

)
,

(48)
for i = 1, 2, · · · , n − 1. The previous system (48) represents an approximate solution of system (46), and
hence (ϕ1(t), ϕ2(t), ϕ3(t), · · · , ϕn(t)) is then the defined solution of system (42).

3.2.3 Fractional multi-group neutron diffusion system in cylindrical reactor

In this part, we will express the fractional multi-group neutron diffusion system in cylindrical reactor, then we
obtain its numerical solution by using reduction lemma (Lemma 3.1) and MFEM. In fact, system (24) can be
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reexpressed in light of the cylindrical reactor in its fractional-order case as follow:

rD2αϕ1(r) +Dαϕ1(r) + r

(
C11ϕ1(r) + C12ϕ2(r) + C13ϕ3(r) + · · ·+ C1nϕn(r)

)
= 0,

rD2αϕ2(r) +Dαϕ2(r) + r

(
C21ϕ1(r) + C22ϕ2(r) + C23ϕ3(r) + · · ·+ C2nϕn(r)

)
= 0,

rD2αϕ3(r) +Dαϕ3(r) + r

(
C31ϕ1(r) + C32ϕ2(r) + C33ϕ3(r) + · · ·+ C3nϕn(r)

)
= 0,

...

rD2αϕn(r) +Dαϕn(r) + r

(
Cn1ϕ1(r) + Cn2ϕ2(r) + Cn3ϕ3(r) + · · ·+ Cnnϕn(r)

)
= 0.

(49)

The same solution for system (48) can be regarded as an approximate solution of the previous system (49), but
here the fi should be assumed as follows:

f1(r, ϕ1, ϕ2, ϕ3, · · · , ϕn, D
αϕ1)

= −
(
1

r
Dαϕ1(r) + C11ϕ1(r) + C12ϕ2(r) + C13ϕ3(r) + · · ·+ C1nϕn(r)

)
,

f2(r, ϕ1, ϕ2, ϕ3, · · · , ϕn, D
αϕ2)

= −
(
1

r
Dαϕ2(r) + C21ϕ1(r) + C22ϕ2(r) + C23ϕ3(r) + · · ·+ C2nϕn(r)

)
,

f3(r, ϕ1, ϕ2, ϕ3, · · · , ϕn, D
αϕ3)

= −
(
1

r
Dαϕ3(r) + C31ϕ1(r) + C32ϕ2(r) + C33ϕ3(r) + · · ·+ C3nϕn(r)

)
,

...
fn(r, ϕ1, ϕ2, ϕ3, · · · , ϕn, D

αϕn)

= −
(
1

r
Dαϕn(r) + Cn1ϕ1(r) + Cn2ϕ2(r) + Cn3ϕ3(r) + · · ·+ Cnnϕn(r)

)
.

(50)

3.2.4 Fractional multi-group neutron diffusion system in slab reactor

In this subsection, we aim to propose a fractional-order version of the multi-group neutron diffusion system in
the slab reactor, and then obtain its numerical solution using Lemma 3.1 and MFEM. In fact, system (32) can
be fractionalized in view of the slab reactor as follows:

D2αϕ1(r) + C11ϕ1(r) + C12ϕ2(r) + C13ϕ3(r) + · · ·+ C1nϕn(r) = 0,

D2αϕ2(r) + C21ϕ1(r) + C22ϕ2(r) + C23ϕ3(r) + · · ·+ C2nϕn(r) = 0,

D2αϕ3(r) + C31ϕ1(r) + C32ϕ2(r) + C33ϕ3(r) + · · ·+ C3nϕn(r) = 0,

...

D2αϕn(r) + Cn1ϕ1(r) + Cn2ϕ2(r) + Cn3ϕ3(r) + · · ·+ Cnnϕn(r) = 0.

(51)
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The same solution for system (48) can also be regarded as an approximate solution of the previous system
(51), but here the fi should be assumed as follows:

f1(r, ϕ1, ϕ2, ϕ3, · · · , ϕn) = −
(
C11ϕ1(r) + C12ϕ2(r) + C13ϕ3(r) + · · ·+ C1nϕn(r)

)
,

f2(r, ϕ1, ϕ2, ϕ3, · · · , ϕn) = −
(
C21ϕ1(r) + C22ϕ2(r) + C23ϕ3(r) + · · ·+ C2nϕn(r)

)
,

f3(r, ϕ1, ϕ2, ϕ3, · · · , ϕn) = −
(
C31ϕ1(r) + C32ϕ2(r) + C33ϕ3(r) + · · ·+ C3nϕn(r)

)
,

...

fn(r, ϕ1, ϕ2, ϕ3, · · · , ϕn) = −
(
Cn1ϕ1(r) + Cn2ϕ2(r) + Cn3ϕ3(r) + · · ·+ Cnnϕn(r)

)
.

(52)

4 Illustrative numerical simulations

Investigating the flux behavior in the reactor is important for reactor performance and safety. Typically, that
flux, indicating the number of neutrons flowing, has its maximum value at the center of the reactor and de-
creases at the surface. Traditionally, it’s thought that flux diminishes at the reactor surface based on the
zero-flux boundary condition that is commonly used for simulating reactor behavior.

This section numerically analyzes all energy flux behaviors in nuclear reactors and their effects on reactor
simulation outcomes. The study evaluates the influence on simulation accuracy and reliability. This research
contributes to nuclear system modeling and emphasizes the significance of suitable boundary conditions in
reactor simulations. In particular, we will introduce the three cases of multi-group neutron diffusion systems
related to spherical reactor, cylindrical reactor, and slap reactor. For this purpose, we list in the following
Table (1) obtained from6 is correspondingly used. According to the data given in Table 1, the values of Cij

can be determined as shown in Table (2). In the same regard, we consider the following initial conditions to
be applicable:

ϕ1(0.0002) = 1, ϕ2(0.0002) = 4.21, ϕ3(0.0002) = 2.764, ϕ4(0.0002) = 3.118,

and
Dαϕ1(0.0002) = 0, Dαϕ2(0.0002) = 0, Dαϕ3(0.0002) = 0, Dαϕ4(0.0002) = 0.

The following subsections show numerical results for each reactor geometry.

4.1 Spherical reactor

The fractional multi-group neutron diffusion system associated with spherical reactor is addressed in this
subsection. With the use of the scheme discussed in Subsection 3.1.1, the classical system (15) is numerically
solved by LTM, and then compared with the numerical solution (ϕ1(r), ϕ2(r), ϕ3(r), ϕ4(r)) of system (42)
obtained by MFEM when α = 1. The overall comparison between these two numerical solutions is depicted
in Figure 1.

In Figures 2, 3, 4, and 5, we present, respectively, several numerical comparisons for ϕ1(r), ϕ2(r), ϕ3(r), and
ϕ4(r) between MFEM’s solutions according to different values of α.

For more illustration, in Figures 6, 7, 8 and 9, we plot respectively several numerical comparisons for ϕ1(r),
ϕ2(r), ϕ3(r), and ϕ4(r) between LTM’s and MFEM’s solutions when α = 0.950, 0.975, 1.
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Table 1: Group Data

Group 1 (1.35 Mev- 10 Mev)
ν1

∑
f1

= 0.0096cm−1
∑

a = 0.0049cm−1
∑

S12 = 0.0831cm−1∑
S13 = 0.00cm−1

∑
S14 = 0.00cm−1 D1 = 2.162cm
χ1 = 0.575

Group 2 (9.1 kev - 1.35 Mev)
ν2

∑
f2

= 0.0012cm−1
∑

a2 = 0.0028cm−1
∑

S21 = 0.00cm−1∑
S22 = 0.00585cm−1

∑
S23 = 0.00cm−1 D2 = 1.087cm
χ2 = 0.425

Group 3 (0.4 ev - 9.1 kev)
ν3

∑
f3

= 0.00177cm−1
∑

a3 = 0.00305cm−1
∑

S31 = 0.00cm−1∑
S32 = 0.00cm−1

∑
S33 = 0.0651cm−1 D3 = 0.632cm

χ3 = 0.0
Group 4 (0.0 ev - 0.4 ev)

ν4
∑

f4
= 0.1851cm−1

∑
a4 = 0.1210cm−1

∑
S41 = 0.00cm−1∑

S42 = 0.00cm−1
∑

S43 = 0.00cm−1 D4 = 0.354cm
χ4 = 0.0

Table 2: The values of the coefficients Cij where i, j = 1, 2, 3, 4 are calculated from Equation (13)

Cij i = 1 i = 2 i = 3 i = 4
j = 1 -0.038150 0.080202 0.092563 0.183898
j = 2 0.000319 -0.055925 0.092563 0.183898
j = 3 0.004707 0.083370 -0.151266 0.183898
j = 4 0.049229 0.148820 0.092563 -0.341808
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Figure 1: LTM’s solution vs. MFEM’s solution for multi-group neutron diffusion system in spherical reactor
for α = 1.
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Figure 2: MFEM’s solutions of ϕ1(r) in spherical reactor for different values of α.
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Figure 3: MFEM’s solutions of ϕ2(r) in spherical reactor for different values of α.
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Figure 4: MFEM’s solutions of ϕ3(r) in spherical reactor for different values of α.
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Figure 5: MFEM’s solutions of ϕ4(r) in spherical reactor for different values of α.

https://doi.org/10.54216/IJNS.240401
Received: September 25, 2023 Revised: February 19, 2024 Accepted: May 07, 2024

23



International Journal of Neutrosophic Science (IJNS) Vol. 24, No. 04, PP. 08-38, 2024

0 2 4 6 8 10 12 14 16 18 20

r

-1

0

1

2

3

4

5

1
(r

)

Comparisons between MFEM and LTM solutions for =0.95,0.975,1

MFEM solution for =0.95

MFEM solution for =0.975

MFEM solution for =1

LTM solution for =1

Figure 6: LTM’s and MFEM’s solutions of ϕ1(r) in spherical reactor for α = 0.95, 0.975, 1.
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Figure 7: LTM’s and MFEM’s solutions of ϕ2(r) in spherical reactor for α = 0.95, 0.975, 1.
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Figure 8: LTM’s and MFEM’s solutions of ϕ3(r) in spherical reactor for α = 0.95, 0.975, 1.
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Figure 9: LTM’s and MFEM’s solutions of ϕ4(r) in spherical reactor for α = 0.95, 0.975, 1.
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4.2 Cylindrical reactor

This subsection discusses the fractional multi-group neutron diffusion system connected to the spherical reac-
tor. The classical system (24) is numerically solved by LTM using the scheme described in Subsection 3.1.1.
The numerical solution (ϕ1(r), ϕ2(r), ϕ3(r), ϕ4(r)) of system (49) produced by MFEM when α = 1 is then
compared with it. Figure 10 shows the general comparison of these two numerical solutions.

In Figures 11, 12, 13, and 14, we present, respectively, several numerical comparisons for ϕ1(r), ϕ2(r), ϕ3(r),
and ϕ4(r) between MFEM’s solutions according to different values of α.

For more illustration, in Figures 15, 16, 17 and 18, we plot respectively several numerical comparisons for
ϕ1(r), ϕ2(r), ϕ3(r), and ϕ4(r) between LTM’s and MFEM’s solutions when α = 0.950, 0.975, 1.

4.3 Slab reactor

This subsection discusses the spherical reactor’s fractional multi-group neutron diffusion system. The numer-
ical solution (ϕ1(r), ϕ2(r), ϕ3(r), ϕ4(r)) of system (51) produced by MFEM when α = 1 is compared with
the numerical solution of the classical system (32) using the scheme described in Subsection 3.1.1. However,
Figure 19 presents an overall comparison of these two numerical solutions.

In Figures 20, 21, 22, and 23, we present, respectively, several numerical comparisons for ϕ1(r), ϕ2(r), ϕ3(r),
and ϕ4(r) between MFEM’s solutions according to different values of α.

For more illustration, in Figures 24, 25, 26 and 27, we plot respectively several numerical comparisons for
ϕ1(r), ϕ2(r), ϕ3(r), and ϕ4(r) between LTM’s and MFEM’s solutions when α = 0.950, 0.975, 1.

5 Discussion

In view of all previous discussed cases, we can state the following observations:

• The numerical solution of the integer-order multi-group neutron diffusion system generated by the LTM
is coincided with the numerical solution of the fractional-order multi-group neutron diffusion system
generated by the MFEM when α = 1 as one can see in Figures 1, 6, 7, 8, 9, 10, 15, 16, 17, 18, 19, 24,
25, 26, and 27.

• The influence of the fractional-order values on the multi-group neutron diffusion system of equations lies
in capturing memory effects, non-local interactions, and anomalous behaviors that are not adequately
described by classical integer-order models. This could apply to subdiffusion or superdiffusion in the
context of neutron diffusion, where the neutron flux behaves differently than in the traditional diffusion
model, see Figures 2, 3, 4, 5, 11, 12, 13, 14, 20, 21, 22, and 23.

• The stability of the two numerical schemes used to solve all cases of the integer- or fractional multi-
group neutron diffusion system has been fulfilled whenever all fluxes converge at the boundary of the
nuclear reactor. This what is known physically as the zero-flux boundary condition, and it can clearly
be seen in all provided figures. For instance, one might observe that all fluxes depicted in Figure 1 go to
zero at r ≈ 8.6 in the spherical reactor, whereas all fluxes go to zero at r ≈ 7 in the cylindrical reactor,
as shown in Figure 10, and also they go to zero at r ≈ 4.3 in the slab reactor as shown in Figure 19.

• In integer/fractional multi-group neutron diffusion system, the steady state is the state in which the dis-
tribution of neutron flux within the reactor remains constant across time. Stated differently, all charac-
teristics pertaining to neutrons, including neutron flux, power distribution, and other pertinent quantities,
become independent of time. Because it reflects the ideal operational state in which the reactor is stable
and running at a constant power level, this steady-state condition is essential to understanding reactor
operation and design. In the steady state, the time derivative of the neutron flux becomes zero, i.e.,

∂ϕi(r)

∂t
=

∂αϕi(r)

∂αt
= 0.

As a result, the neutron flux ϕi(r) becomes independent of time, for all i = 1, 2, · · · , n.
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Figure 10: LTM’s solution vs. MFEM’s solution for multi-group neutron diffusion system in cylindrical reactor
for α = 1.
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Figure 11: MFEM’s solutions of ϕ1(r) in cylindrical reactor for different values of α.
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Figure 12: MFEM’s solutions of ϕ2(r) in cylindrical reactor for different values of α.
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Figure 13: MFEM’s solutions of ϕ3(r) in cylindrical reactor for different values of α.
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Figure 14: MFEM’s solutions of ϕ4(r) in cylindrical reactor for different values of α.
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Figure 15: LTM’s and MFEM’s solutions of ϕ1(r) in cylindrical reactor for α = 0.95, 0.975, 1.
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Figure 16: LTM’s and MFEM’s solutions of ϕ2(r) in cylindrical reactor for α = 0.95, 0.975, 1.
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Figure 17: LTM’s and MFEM’s solutions of ϕ3(r) in cylindrical reactor for α = 0.95, 0.975, 1.
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Figure 18: LTM’s and MFEM’s solutions of ϕ4(r) in cylindrical reactor for α = 0.95, 0.975, 1.
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Figure 19: LTM’s solution vs. MFEM’s solution for multi-group neutron diffusion system in slab reactor for
α = 1.
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Figure 20: MFEM’s solutions of ϕ1(r) in slab reactor for different values of α.
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Figure 21: MFEM’s solutions of ϕ2(r) in slab reactor for different values of α.
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Figure 22: MFEM’s solutions of ϕ3(r) in slab reactor for different values of α.
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Figure 23: MFEM’s solutions of ϕ4(r) in slab reactor for different values of α.
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Figure 24: LTM’s and MFEM’s solutions of ϕ1(r) in slab reactor for α = 0.95, 0.975, 1.
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Figure 25: LTM’s and MFEM’s solutions of ϕ2(r) in slab reactor for α = 0.95, 0.975, 1.
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Figure 26: LTM’s and MFEM’s solutions of ϕ3(r) in slab reactor for α = 0.95, 0.975, 1.
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Figure 27: LTM’s and MFEM’s solutions of ϕ3(r) in slab reactor for α = 0.95, 0.975, 1.
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6 Conclusion

In this study, two numerical solutions to multi-group neutron diffusion systems of equations with fractional-
order values have been discussed. First, it has solved the multi-group neutron diffusion equations in their
classical form using the Laplace transform method. It has then used the Caputo differentiator to convert these
equations into their equivalent fractional-order cases. A innovative strategy has been introduced to reduce the
resulting fractional-order system from a system of 2α-order to a system of α-order in order to manage it. The
so-called modified fractional Euler method has subsequently been applied to solve this modified system. The
multi-group neutron diffusion equations in slab, spherical, and cylindrical reactors have been covered in the
work.
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