International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 23 , Issue 2 , PP: 91-103, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Sorting Out Interval Valued Neutrosophic Fuzzy Shortest Cycle Route Problem by Reduced Matrix Method

S. Krishna Prabha 1 * , M. Clement Joe Anand 2 , V. Vidhya 3 , G. Nagarajan 4 , Utpal Saikia 5 , Nivetha Martin 6 , M. Santoshi Kumari 7 , Mohit Tiwari 8

  • 1 Department of Mathematics, PSNA College of Engineering and Technology, Dindigul – 624622, Tamil Nadu, India - (jvprbh1@gmail.com)
  • 2 Department of Mathematics, Mount Carmel College (Autonomous), Affiliated to Bengaluru City University, Bengaluru - 560052, Karnataka, India - (arjoemi@gmail.com)
  • 3 Devision of Mathematics, Vellore Institute of Technology, Chennai - 600127, Tamil Nadu, India - (vidhya.v@vit.ac.in)
  • 4 Department of Mathematics, Panimalar Engineering College, Chennai - 600 123, Tamil Nadu, India - (sridinnaga@gmail.com)
  • 5 Department of Mathematics, Silapathar College, Dhemaji, Assam – 787059, India - (utpalsaikiajorhat@gmail.com)
  • 6 Department of Mathematics, Arul Anandar College, Karumathur-625514, Tamil Nadu, India - (nivetha.martin710@gmail.com)
  • 7 Department of Mathematics, Chaitanya Bharathi Institute of Technology, Gandipet, Hyderabad - 500075, India - (santoshinagaram@gmail.com)
  • 8 Department of Computer Science and Engineering, Bharati Vidyapeeth’s College of Engineering, Delhi -110063, India - (mohit.tiwari@bharatividyapeeth.edu .)
  • Doi: https://doi.org/10.54216/IJNS.230208

    Received: June 23, 2023 Revised: September 19, 2023 Accepted: November 24, 2023
    Abstract

    The assertiveness theory next addresses the difficulties of the travelling salesman after discussing the problem with transportation and assignment.  The Shortest Cycling Route Problem (SCRP) finds the shortest route that stops in each city exactly once using a preset set of cities and their bilateral distances.  The arc lengths in TSO are typically seen as representing travel time or travel expenses rather than actual distance.  The precise arc length cannot be predicted because cargo, climate, road conditions, and other factors also can affect the journey time or cost.  For handling the unpredictability in SCRP, fuzzy set theory provides a new tool.  The shortest cyclic route problem with interval-valued neutrosophic fuzzy numbers as cost coefficients is solved using the simplified matrix techniques in this study.  Reduced Matrix Method is used to solve a numerical problem and its efficacy is demonstrated.

    Keywords :

    Interval-valued neutrosophic fuzzy , shortest cyclic route problem , reduced matrix.

    References

    [1]        Kumar, A., Gupta, A., “Assignment and Travelling Salesman Problems with Coefficients as LR Fuzzy Parameters”, International Journal of Applied Science and Engineering, vol. 10, no. 3, pp. 155-170, 2012. https://doi.org/10.6703/IJASE.2012.10(3).155

    [2]        Angelo. P.P., “Optimization in an intuitionistic fuzzy environment”. Fuzzy Sets and Systems, Vol.86, pp.299-306, 1997. https://doi.org/10.1016/S0165-0114(96)00009-7

    [3]        Atanassov, K. T., Gargov, G.,  “Interval valued intuitionistic fuzzy sets,” Fuzzy Sets and Systems, Vol. 31, No. 3, pp. 343–349.1989. https://doi.org/10.1016/0165-0114(89)90205-4

    [4]        Atanassov. K. T, “Intuitionistic fuzzy sets,” Fuzzy Sets and Systems”, 1986,Vol. 20, No. 1, pp. 87–96,1986. https://doi.org/10.1016/S0165-0114(86)80034-3

    [5]        Biswas, B., Mitra, A., Sengupta. S., " A Study of Travelling Salesman Problem using  Reinforcement Learning Over Genetic Algorithm”, Turkish Journal of Computer and Mathematics Education ,Vol.11, No.02 pp.963-981, 2020.

    [6]        Biswas, P.,  Pramanik, S., and Giri.C., “Aggregation of triangular fuzzy neutrosophic set information and its application to multi attribute decision making,” Neutrosophic Sets and Systems, vol. 12, No.1,pp. 20–40,2016. https://digitalrepository.unm.edu/nss_journal/vol12/iss1/4

    [7]        Broumi, S., Nagarajan, D., and Bakali. A., "The shortest path problem in interval valued trapezoidal and triangular neutrosophic environment”, Complex Intell. Syst. Vol.5, pp. 391–402.2019. https://doi.org/10.1007/s40747-019-0092-5

    [8]        Broumi, S., Bakali,A.,  Talea, M., Smarandache, F., and Vladareanu, L., “Shortest path problem under triangular fuzzy neutrosophic information”, in Proceedings of the 2016, 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA), Chengdu, China.2016.

    [9]        Dantzig, G. B., Fulkerson, D. R., and Johnson, S.M., "Solution of a large- scale traveling salesman problem”, Operations Research, vol. 2, pp. 393-410, 1954.

    [10]      Dhouib, S., “Optimization of travelling salesman problem on single valued triangular neutrosophic number using dhouibmatrix-TSP1 heuristic”, International Journal of Engineering,Vol. 34, No. 12, pp. 1–6, 2021. https://doi.org/10.5829/ije.2021.34.12C.09.

    [11]      Hadi Basirzadeh., “Ones Assignment Method for Solving Traveling Salesman Problem”, Journal of mathematics and computer science, Vol.10, pp.258-265, 2014.

    [12]      Hitchcock, F. L., “The distribution of a product from several sources to numerous localities”, Journal of mathematics and physics, Vol.20 (1-4), pp.224-230, 1941. http://dx.doi.org/10.1002/sapm1941201224

    [13]      Jeyalakshmi, K.,  and Prabha, S. K.,Unraveling Type-3 Fuzzy Shortest Cycle Route Problem By RMM”, Journal Of Critical Reviews,Vol. 7,No. 15, pp.4854-4858, 2020.

    [14]      Karaaslan, F., and Hayat, K., “Some new operations on single valued neutrosophic matrices and their applications in multicriteria group decision making,” Applied Intelligence, Vol. 48, No. 12, pp. 4594–4614.2018. https://doi.org/10.1007/s10489-018-1226-y

    [15]      Kumar, N., Karambir and Rajiv Kumar., “A study of genetic algorithm approach to study travelling salesman problem”, Journal of Global Research in Computer Science, Vol. 3, 3,pp.33-37, 2012.

    [16]      Nirmala, G.,  and  Anju, R.,  “Travelling Salesman Problem (SCRP) Using Fuzzy Quantifier”, International Journal of Science and Research ,Vol.3, No.12, pp.184-186, 2012. www.ijsr.net/archive/v3i12/U1VCMTQxNjI=.pdf

    [17]      Oliver, I.M., Smith, D.J.,  and Holland, J.R.C., “A Study of Permutation Crossover Operators on the Travelling Salesman Problem”. In J.J. Grefenstette (ed.). Genetic Algorithms and Their Applications: Proceedings of the 2nd International Conference on Genetic Algorithms. Lawrence Erlbaum Associates, Hilladale, NJ, 1987.

    [18]      Pramanik, S., Dey, P.P., “Multi-level linear programming problem with neutrosophic numbers: a goal programming strategy”, Neutrosophic Sets Syst, 29:242–254, 2020. https://digitalrepository.unm.edu/nss_journal/vol29/iss1/19

    [19]      Sudha. S, Nivetha Martin, M. Clement Joe Anand, P. G. Palanimani,T. Thirunamakkani, B. Ranjitha. "MACBETH-MAIRCA Plithogenic Decision-Making on Feasible Strategies of Extended Producer's Responsibility towards Environmental Sustainability." International Journal of Neutrosophic Science, Vol. 22, No. 2, 2023 ,PP. 114-130.

    [20]      Saini, R.K.,  and Sangal, A.,“Application of single valued trapezoidal neutrosophicnumbers in transportation problem”,NeutrosophicSetsandSystem,Vol.35,pp.563583,2020.https://digitalrepository.unm.edu/nss_journal/vol35/iss1/33

    [21]      Saloni Gupta, Poonam Panwar., “Solving Travelling Salesman Problem Using Genetic Algorithm”, International Journal of Advanced Research in Computer Science and Software Engineering , Volume 3, No. 6,pp.376-380, June 2013.

    [22]      Shweta, R., and Saurabh Ranjan. S.,Solving Travelling Salesman Problem Using Improved Genetic Algorithm”, Indian Journal of Science and Technology,Vol.10,No.30,pp.1-6,2017. 10.17485/ijst/2017/v10i30/115512

    [23]      Sikkannan, K.P., Vimala. S.,“Unraveling neutrosophic transportation problem using costs mean and Complete contingency cost table,” Neutrosophic Sets and Systems, vol. 29, pp. 165–173,2019. https://digitalrepository.unm.edu/nss_journal/vol29/iss1/13

    [24]      Singh.A, Kumar. A, and Appadoo. S. S., “Modified approach for optimization of real life transportation problem in neutrosophic environment,” Mathematical Problems in Engineering, Article ID 2139791, pp.1-10, pages, 2017. https://doi.org/10.1155/2017/2139791

    [25]      Smarandache, F., “A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set”, Neutrosophic Probability and Statistics, InfoLearnQuest, Philadelphia, PA, USA ,6th edition.2007. https://digitalrepository.unm.edu/math_fsp/163/

    [26]      Sudhakar, V.J., Navaneetha Kumar, V., “A New Approach to Solve the Classical Symmetric Shortest Cyclic Route Problem by Zero Suffix Method”,Int. J. Contemp. Math. Sciences, Vol. 6, no. 23,pp. 1111 – 1120, 2011.

    [27]      Zadeh, L.A., “Fuzzy sets as a basis for a theory of possibility”, Fuzzy sets and systems, Vol.1,No.1,pp. 3-28,1978. https://doi.org/10.1016/0165-0114(78)90029-5

    [28]      Zadeh. L.A., “Fuzzy sets”, Information and Computation”, vol. 8.pp. 338–353,1965. http://dx.doi.org/10.1016/S0019-9958(65)90241-X

    [29]      Manshath,E. Kungumaraj,E. Lathanayagam,M. C. Joe Anand, Nivetha Martin,Elangovan Muniyandy,S. Indrakumar. "Neutrosophic Integrals by Reduction Formula and Partial Fraction Methods for Indefinite Integrals." International Journal of Neutrosophic Science, Vol. 23, No. 1, 2024 ,PP. 08-16.

    [30]      Rajesh, Sharmila Rathod, Jyoti Kundale, Nilesh Rathod, M. Clement Joe Anand, Utpal Saikia, Mohit  Tiwari, Nivetha Martin. "A Study on Interval Valued Temporal Neutrosophic Fuzzy Sets." International Journal of Neutrosophic Science, Vol. 23, No. 1, 2024 ,PP. 341-349.

    [31]      Broumi, S., Mohanaselvi, S., Witczak, T., Talea, M., Bakali, A., & Smarandache, F. (2023). Complex fermatean neutrosophic graph and application to decision making. Decision Making: Applications in Management and Engineering, 6(1), 474-501.

    [32]      Broumi, S., Raut, P. K., & Behera, S. P. (2023). Solving shortest path problems using an ant colony algorithm with triangular neutrosophic arc weights. International Journal of Neutrosophic Science, 20(4), 128-28.

    [33]      Bharatraj J., Clement Joe Anand, M., “Power harmonic weighted aggregation operator on single-valued trapezoidal neutrosophic numbers and interval-valued neutrosophic sets”. In: Fuzzy Multi-criteria Decision-Making Using Neutrosophic Sets. Springer International Publishing, Cham, pp. 45–62, 2019.

    [34]      Clement Joe Anand M, Janani Bharatraj, “Interval-Valued Neutrosophic Numbers with WASPAS”. In: Kahraman, C., Otay, İ. (eds) Fuzzy Multi-criteria Decision-Making Using Neutrosophic Sets. Studies in Fuzziness and Soft Computing, Springer, Cham, pp.435-453, 2019

     

    Cite This Article As :
    Krishna, S.. , Clement, M.. , Vidhya, V.. , Nagarajan, G.. , Saikia, Utpal. , Martin, Nivetha. , Santoshi, M.. , Tiwari, Mohit. Sorting Out Interval Valued Neutrosophic Fuzzy Shortest Cycle Route Problem by Reduced Matrix Method. International Journal of Neutrosophic Science, vol. , no. , 2024, pp. 91-103. DOI: https://doi.org/10.54216/IJNS.230208
    Krishna, S. Clement, M. Vidhya, V. Nagarajan, G. Saikia, U. Martin, N. Santoshi, M. Tiwari, M. (2024). Sorting Out Interval Valued Neutrosophic Fuzzy Shortest Cycle Route Problem by Reduced Matrix Method. International Journal of Neutrosophic Science, (), 91-103. DOI: https://doi.org/10.54216/IJNS.230208
    Krishna, S.. Clement, M.. Vidhya, V.. Nagarajan, G.. Saikia, Utpal. Martin, Nivetha. Santoshi, M.. Tiwari, Mohit. Sorting Out Interval Valued Neutrosophic Fuzzy Shortest Cycle Route Problem by Reduced Matrix Method. International Journal of Neutrosophic Science , no. (2024): 91-103. DOI: https://doi.org/10.54216/IJNS.230208
    Krishna, S. , Clement, M. , Vidhya, V. , Nagarajan, G. , Saikia, U. , Martin, N. , Santoshi, M. , Tiwari, M. (2024) . Sorting Out Interval Valued Neutrosophic Fuzzy Shortest Cycle Route Problem by Reduced Matrix Method. International Journal of Neutrosophic Science , () , 91-103 . DOI: https://doi.org/10.54216/IJNS.230208
    Krishna S. , Clement M. , Vidhya V. , Nagarajan G. , Saikia U. , Martin N. , Santoshi M. , Tiwari M. [2024]. Sorting Out Interval Valued Neutrosophic Fuzzy Shortest Cycle Route Problem by Reduced Matrix Method. International Journal of Neutrosophic Science. (): 91-103. DOI: https://doi.org/10.54216/IJNS.230208
    Krishna, S. Clement, M. Vidhya, V. Nagarajan, G. Saikia, U. Martin, N. Santoshi, M. Tiwari, M. "Sorting Out Interval Valued Neutrosophic Fuzzy Shortest Cycle Route Problem by Reduced Matrix Method," International Journal of Neutrosophic Science, vol. , no. , pp. 91-103, 2024. DOI: https://doi.org/10.54216/IJNS.230208