International Journal of Neutrosophic Science

Journal DOI

https://doi.org/10.54216/IJNS

Submit Your Paper

2690-6805ISSN (Online) 2692-6148ISSN (Print)

Volume 21 , Issue 1 , PP: 105-120, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

Neutrosophic Pre-compactness

Sudeep Dey 1 * , Gautam Chandra Ray 2

  • 1 Department of Mathematics, Science College, Kokrajhar, Assam, India; Department of Mathematics, Central Institute of Technology, Kokrajhar, Assam, India - (sudeep.dey.1976@gmail.com)
  • 2 Department of Mathematics, Central Institute of Technology, Kokrajhar, Assam, India - (gautomofcit@gmail.com)
  • Doi: https://doi.org/10.54216/IJNS.210110

    Received: January 16, 2023 Revised: April 12, 2023 Accepted: May 10, 2023
    Abstract

    The purpose of this article is to study some covering properties in neutrosophic topological spaces via neutrosophic pre-open sets. We define neutrosophic pre-open cover, neutrosophic pre-compactness, neutrosophic countably pre-compactness and neutrosophic pre-Lindel¨ofness and study various properties connecting them. We study some properties involving neutrosophic continuous and neutrosophic pre-continuous functions. We also define neutrosophic pre-base, neutrosophic pre-subbase, neutrosophic pre∗-open function, neutrosophic pre-irresolute function and study some properties. In addition to that, we define and study neutrosophic local pre-compactness.

    Keywords :

    Neutrosophic pre-compact space , Neutrosophic countably pre-compact space , Neutrosophic pre- Lindelof space , Neutrosophic Np-base , Neutrosophic Np-subbase , Neutrosophic pre-irresolute function , Neutrosophic local pre-compact space.

    References

    [1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol. 20, pp. 87–96, 1986.

    [2] M. Arar, About Neutrosophic Countably Compactness, Neutrosophic Sets and Systems, vol. 36(1), pp. 246–255, 2020.

    [3] I. Arokiarani, R. Dhavaseelan, S. Jafari, M. Parimala, On Some New Notions and Functions in Neutrosophic Topological Space, Neutrosophic Sets and Systems, vol. 16, pp. 16–19, 2017.

    [4] K. Bageerathi, P. Puvaneswary, Neutrosophic Feebly Connectedness and Compactness, IOSR Journal of Polymer and Textile Engineering, vol. 6(3), pp. 7–13, 2019.

    [5] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, vol. 88, pp. 81–89, 1997.

    [6] I. Deli, S. Broumi, Neutrosophic soft relations and some properties, Ann. Fuzzy Math. Inform., vol. 9, pp. 169–182, 2015.

    [7] S. Dey, G. C. Ray, Pre-separation axioms in Neutrosophic Topological Spaces, Neutrosophic Sets and Systems (Accepted).

    [8] S. M. Jaber, Fuzzy Precompact Space, Journal of Physics: Conference Series 1591 012073, FISCAS 2020, Iraq, 26–27 June 2020, IOP Publishing. doi:10.1088/1742-6596/1591/1/012073.

    [9] S. Karatas, C. Kuru, Neutrosophic Topology, Neutrosophic Sets and Systems, vol. 13(1), pp. 90–95, 2016.

    [10] T. Y. Ozturk, A. Benek, A. Ozkan, Neutrosophic soft compact spaces, Afrika Matematika, vol. 32, pp. 301–316, 2021.

    [11] G. C. Ray, S. Dey, Neutrosophic point and its neighbourhood structure, Neutrosophic Sets and Systems,  vol. 43, pp. 156–168, 2021.

    [12] V. V. Rao, Y. S. Rao, Neutrosophic Pre-open Sets and Pre-closed Sets in Neutrosophic Topology, International Journal of ChemTech Research, vol. 10(10), pp. 449–458, 2017.

    [13] F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability. American Research Press, Rehoboth, NM, 1999.

    [14] F. Smarandache, Neutrosophy and neutrosophic logic, First international conference on neutrosophy, neutrosophic logic, set, probability, and statistics, University of New Mexico, Gallup, NM 87301, USA, 2002.

    [15] F. Smarandache, Neutrosophic set - a generalization of the intuitionistic fuzzy set, International Journal of Pure and Applied Mathematics, vol. 24(3), pp. 287–297, 2005.

    [16] A. A. Salama, S. Alblowi, Neutrosophic set and Neutrosophic Topological Spaces, IOSR Journal of Mathematics, vol. 3(4), pp. 31–35, 2012.

    [17] A. A. Salama, F. Smarandache, V. Kroumov, Closed sets and Neutrosophic Continuous Functions, Neutrosophic Sets and Systems, vol. 4, pp. 4–8, 2014.

    [18] A. A. Salama, F. Smarandache, Neutrosophic Set Theory, The Educational Publisher 415 Columbus, Ohio, 2015.

    [19] S. S¸enyurt, G. Kaya, On Neutrosophic Continuity, Ordu University Journal of Science and Technology, vol. 7(2), pp. 330–339, 2017.

    [20] H. Wang, F. Smarandache, Y. Q. Zhang, R. Sunderraman, Single valued neutrosophic sets, Multispace Multistruct, vol. 4, pp. 410–413, 2010.

    Cite This Article As :
    Dey, Sudeep. , Chandra, Gautam. Neutrosophic Pre-compactness. International Journal of Neutrosophic Science, vol. , no. , 2023, pp. 105-120. DOI: https://doi.org/10.54216/IJNS.210110
    Dey, S. Chandra, G. (2023). Neutrosophic Pre-compactness. International Journal of Neutrosophic Science, (), 105-120. DOI: https://doi.org/10.54216/IJNS.210110
    Dey, Sudeep. Chandra, Gautam. Neutrosophic Pre-compactness. International Journal of Neutrosophic Science , no. (2023): 105-120. DOI: https://doi.org/10.54216/IJNS.210110
    Dey, S. , Chandra, G. (2023) . Neutrosophic Pre-compactness. International Journal of Neutrosophic Science , () , 105-120 . DOI: https://doi.org/10.54216/IJNS.210110
    Dey S. , Chandra G. [2023]. Neutrosophic Pre-compactness. International Journal of Neutrosophic Science. (): 105-120. DOI: https://doi.org/10.54216/IJNS.210110
    Dey, S. Chandra, G. "Neutrosophic Pre-compactness," International Journal of Neutrosophic Science, vol. , no. , pp. 105-120, 2023. DOI: https://doi.org/10.54216/IJNS.210110