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Abstract

The purpose of this article is to study some covering properties in neutrosophic topological spaces via neu-
trosophic pre-open sets. We define neutrosophic pre-open cover, neutrosophic pre-compactness, neutrosophic
countably pre-compactness and neutrosophic pre-Lindelöfness and study various properties connecting them.
We study some properties involving neutrosophic continuous and neutrosophic pre-continuous functions. We
also define neutrosophic pre-base, neutrosophic pre-subbase, neutrosophic pre∗-open function, neutrosophic
pre-irresolute function and study some properties. In addition to that, we define and study neutrosophic local
pre-compactness.
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Lindelöf space; Neutrosophic Np-base; Neutrosophic Np-subbase; Neutrosophic pre-irresolute function; Neu-
trosophic local pre-compact space.

1 Introduction

The notion of neutrosophic set was coined by Florentin Smarandache.13–15 Since then, Smarandache and other
researchers6, 18, 20 have studied and further developed the theory of neutrosophic sets. Neutrosophic set is an
extended form of intuitionistic fuzzy set developed by K.Atanassov1 in 1986. The concept of neutrosophic
sets has found various applications in different fields, particularly in situations where uncertainty, vagueness,
and indeterminacy are present.

In 2012, Salama & Alblowi16 developed the concept of neutrosophic topological space, which is a generaliza-
tion of the intuitionistic fuzzy topological space that was originally proposed by D.Coker5 in 1997. In 2016,
Karatas and Kuru9 redefined the single-valued neutrosophic set operations and introduced neutrosophic topol-
ogy. The authors then investigated some important properties of neutrosophic topological spaces. Since then,
many researchers2, 4, 10, 11, 17, 19 have further developed various aspects of neutrosophic topology. The idea of
fuzzy pre-compact space was introduced by Jaber8 in 2020. Rao & Rao,12 in 2017, developed the concepts
of neutrosophic pre-open and pre-closed sets and thereafter, Arokiarani et.al.3 developed the idea of neutro-
sophic pre-open, pre-closed, pre-continuous functions. Recently, Dey & Ray7 studied separation properties
using neutrosophic pre-open sets.

In this write-up, we first define neutrosophic pre-open cover using neutrosophic pre-open sets. After that,
we define neutrosophic pre-compact space, neutrosophic countably pre-compact space and neutrosophic pre-
Lindelöf space via neutrosophic pre-open covers and study various covering properties involving them. We
also define neutrosophic pre-base, neutrosophic pre-subbase, neutrosophic pre∗-open function, neutrosophic
pre-irresolute function and investigate some covering properties. In the long run, we define and study neutro-
sophic local pre-compactness.
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2 Preliminaries

2.1 Definition:13

Let X be the universe of discourse. A neutrosophic set A over X is defined as A = {⟨x, TA(x), IA(x),FA(x)⟩ :
x ∈ X}, where the functions TA, IA,FA are real standard or non-standard subsets of ]−0, 1+[, i.e., TA : X →
]−0, 1+[, IA : X → ]−0, 1+[, FA : X → ]−0, 1+[ and −0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

The neutrosophic set A is characterized by the truth-membership function TA, indeterminacy-membership
function IA, falsehood-membership function FA.

2.2 Definition:20

Let X be the universe of discourse. A single valued neutrosophic set A over X is defined as A = {⟨x, TA(x),
IA(x),FA(x)⟩ : x ∈ X}, where TA, IA,FA are functions from X to [0, 1] and 0 ≤ TA(x)+IA(x)+FA(x) ≤
3.

The set of all single valued neutrosophic sets over X is denoted by N (X).

Throughout this article, a neutrosophic set (NS, for short) will mean a single-valued neutrosophic set.

2.3 Definition:9

Let A,B ∈ N (X). Then

(i) (Inclusion): If TA(x) ≤ TB(x), IA(x) ≥ IB(x),FA(x) ≥ FB(x) for all x ∈ X then A is said to be a
neutrosophic subset of B and which is denoted by A ⊆ B.

(ii) (Equality): If A ⊆ B and B ⊆ A then A = B.

(iii) (Intersection): The intersection of A and B, denoted by A ∩ B, is defined as A ∩ B = {⟨x, TA(x) ∧
TB(x), IA(x) ∨ IB(x),FA(x) ∨ FB(x)⟩ : x ∈ X}.

(iv) (Union): The union of A and B, denoted by A∪B, is defined as A∪B = {⟨x, TA(x)∨TB(x), IA(x)∧
IB(x),FA(x) ∧ FB(x)⟩ : x ∈ X}.

(v) (Complement): The complement of the NS A, denoted by Ac, is defined as Ac = {⟨x,FA(x), 1 −
IA(x), TA(x)⟩ : x ∈ X}

(vi) (Universal Set): If TA(x) = 1, IA(x) = 0,FA(x) = 0 for all x ∈ X then A is said to be neutrosophic
universal set and which is denoted by X̃ .

(vii) (Empty Set): If TA(x) = 0, IA(x) = 1,FA(x) = 1 for all x ∈ X then A is said to be neutrosophic
empty set and which is denoted by ∅̃.

2.4 Definition:11

Let N (X) be the set of all neutrosophic sets over X . An NS P = {⟨x, TP (x), IP (x),FP (x)⟩ : x ∈ X} is
called a neutrosophic point (NP, for short) iff for any element y ∈ X , TP (y) = α, IP (y) = β,FP (y) = γ
for y = x and TP (y) = 0, IP (y) = 1,FP (y) = 1 for y ̸= x, where 0 < α ≤ 1, 0 ≤ β < 1, 0 ≤ γ < 1.
A neutrosophic point P = {⟨x, TP (x), IP (x),FP (x)⟩ : x ∈ X} will be denoted by by xα,β,γ . For the NP
xα,β,γ , x will be called its support. The complement of the NP xα,β,γ will be denoted by xc

α,β,γ or (xα,β,γ)
c.
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2.5 Definition:17

Let X and Y be two non-empty sets and f : X → Y be a function. Also let A ∈ N (X) and B ∈ N (Y ).
Then

(1) Image of A under f is defined by
f(A) = {⟨y, f(TA)(y), f(IA)(y), (1− f(1−FA))(y)⟩ : y ∈ Y }, where

f(TA)(y) =

{
sup{TA(x) : x ∈ f−1(y)} if f−1(y) ̸= ∅
0 if f−1(y) = ∅

f(IA)(y) =

{
inf{IA(x) : x ∈ f−1(y)} if f−1(y) ̸= ∅
1 if f−1(y) = ∅

(1− f(1−FA))(y) =

{
inf{FA(x) : x ∈ f−1(y)} if f−1(y) ̸= ∅
1 if f−1(y) = ∅

(2) Pre-image of B under f is defined by
f−1(B) = {⟨x, f−1(TB)(x), f−1(IB)(x), f−1(FB)(x)⟩ : x ∈ X}

2.6 Theorem:17

Let f : X → Y be a function. Also let A,Ai ∈ N (X), i ∈ I and B,Bj ∈ N (Y ), j ∈ J . Then the following
hold.

(i) A1 ⊆ A2 ⇔ f(A1) ⊆ f(A2), B1 ⊆ B2 ⇔ f−1(B1) ⊆ f−1(B2).

(ii) A ⊆ f−1(f(A)) and if f is injective then A = f−1(f(A)).

(iii) f−1(f(B)) ⊆ B and if f is surjective then f−1(f(B)) = B.

(iv) f−1(∪Bj) = ∪f−1(Bj) and f−1(∩Bj) = ∩f−1(Bj).

(v) f(∪Ai) = ∪f(Ai), f(∩Ai) ⊆ ∩f(Ai) and if f is injective then f(∩Ai) = ∩f(Ai).

(vi) f−1(∅̃Y ) = ∅̃X , f−1(Ỹ ) = X̃ .

(vii) f(∅̃X) = ∅̃Y , f(X̃) = Ỹ if f is surjective.

2.7 Definition:9

Let τ ⊆ N (X). Then τ is called a neutrosophic topology on X if

(i) ∅̃ and X̃ belong to τ .

(ii) An arbitrary union of neutrosophic sets in τ is in τ .

(iii) The intersection of any two neutrosophic sets in τ is in τ .

If τ is a neutrosophic topology on X then the pair (X, τ) is called a neutrosophic topological space (NTS, for
short) over X . The members of τ are called neutrosophic open sets in X . If for a neutrosophic set A, Ac ∈ τ
then A is said to be a neutrosophic closed set in X .
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2.8 Definition:9

Let (X, τ) be a NTS and A ∈ N (X). Then the neutrosophic

(i) interior of A, denoted by int(A), is defined as int(A) = ∪{G : G ∈ τ and G ⊆ A}.

(ii) closure of A, denoted by cl(A), is defined as cl(A) = ∩{G : G is a neutrosophic closed set and G ⊇ A}.

2.9 Definition:12

Let (X, τ) be an NTS and A ∈ N (X). Then

(i) A is called a neutrosophic pre-open set (NPO, for short) in X iff A ⊆ int(cl(A)).

(ii) A is called a neutrosophic pre-closed (NPC, for short) set in X iff cl(int(A)) ⊆ A.

If G is an NPO (resp. NPC) set in X then we may also say that G is a τ -NPO (resp. τ -NPC) set.

2.10 Theorem:12

Let (X, τ) be an NTS and A ∈ N (X). Then

(i) A is an NPC set in X if and only if Ac is an NPO set in X .

(ii) Every neutrosophic open set in an NTS is an NPO set.

(iii) Every neutrosophic closed set in an NTS is an NPC set.

2.11 Definition:19

Let f be a function from an NTS (X, τ) to the NTS (Y, σ). Then

(i) f is called a neutrosophic open function if f(G) ∈ σ for all G ∈ τ

(ii) f is called a neutrosophic continuous function if f−1(G) ∈ τ for all G ∈ σ.

2.12 Definition:3

Let f be a function from an NTS (X, τ) to the NTS (Y, σ). Then f is called a neutrosophic

(i) pre-open function if f(G) is an NPO set in Y for every neutrosophic open set G in X .

(ii) pre-continuous function if f−1(G) is an NPO set in X for every G ∈ σ.
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2.13 Proposition:7

Let (Y, τ |Y ) be a neutrosophic subspace of the NTS (X, τ). Then

(i) G |Y is a τ |Y -NPO set in Y for every τ -NPO set G in X .

(ii) G |Y is a τ |Y -NPC set in Y for every τ -NPC set G in X .

3 Neutrosophic pre-compactness

3.1 Definition:

Let (X, τ) be an NTS and A ∈ N (X). A collection C = {Gλ : λ ∈△} of NPO sets of X is called a
neutrosophic pre-open cover (NPOC, in short) of A iff A ⊆ ∪λ∈△Gλ. In particular, C is said to be an NPOC
of X iff X̃ = ∪λ∈△Gλ.

Let C be an NPOC of the NS A and C ′ ⊆ C. Then C ′ is called a neutrosophic pre-open subcover (NPOSC,
in short) of C if C ′ is also an NPOC of A.

An NPOC C of an NS A is said to be countable (resp. finite) if C consists of a countable (resp. finite) number
of NPO sets.

3.2 Definition:

An NS A in an NTS (X, τ) is said to be a neutrosophic pre-compact set iff every NPOC of A has a finite
NPOSC. In particular, the space X is said to be a neutrosophic pre-compact space iff every NPOC of X has a
finite NPOSC.

An NTS (X, τ) is said to be a neutrosophic countably pre-compact space iff every countable NPOC of X has
a finite NPOSC.

An NTS (X, τ) is said to be a neutrosophic pre-Lindelöf space iff every NPOC of X has a countable NPOSC.

3.3 Proposition:

Every neutrosophic pre-compact space is neutrosophic countably pre-compact.

Proof: Obvious.

3.4 Proposition:

In an NTS, every neutrosophic pre-compact set is neutrosophic compact.

Proof: Let A be a neutrosophic pre-compact set of an NTS (X, τ). Let C = {Gi : i ∈△} be an NOC of A.
Since every neutrosophic open set is an NPO set[by 2.10], so Gi is an NPO set for each i ∈△. Therefore C
is an NPOC of A. Since A is pre-compact, so there exists a finite subcollection {G1

i , G
2
i , ..., G

m
i }, say, of C

such that A ⊆ G1
i ∪G2

i ∪ ... ∪Gm
i . Thus the NOC C of A has a finite NOSC {G1

i , G
2
i , ..., G

m
i }. Hence A is a

neutrosophic compact set.
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3.5 Example :

Converse of 3.4 is not true. We establish it by the following example.

Let X = {a, b}, A = {⟨a, 1, 0, 0⟩, ⟨b, 0, 1, 1⟩}, τ = {X̃, ∅̃, A} and for each n ∈ N = {1, 2, 3, · · · }, we define
Hn = {⟨a, n

n+1 ,
1

n+2 ,
1

n+3 ⟩, ⟨b, 0, 1, 1⟩}. Obviously (X, τ) is an NTS and Hn is an NPO set in X . Clearly A
is a neutrosophic compact set. Now ∪n∈NHn = A. So, {Hn : n ∈ N} is an NPOC of A. It is clear that the
NPOC {Hn : n ∈ N} of A has no finite NPOSC. Therefore A is not a neutrosophic pre-compact set in X .

3.6 Proposition:

Every neutrosophic pre-compact space is a neutrosophic compact space.

Proof: Obvious from 3.4.

3.7 Remark:

Converse of 3.6 is not true. We establish it by the following example.

Let us consider the NTS (N, τ), where τ = {∅̃, Ñ},N = {1, 2, 3, · · · }. Clearly (N, τ) is a neutrosophic
compact space. We show that (N, τ) is not a neutrosophic pre-compact space.

For n ∈ N, we define Gn = {⟨x, TGn
(x), IGn

(x),FGn
(x) : x ∈ X}, where TGn

(x) = 1, IGn
(x) =

0,FGn
(x) = 0 if x = n and TGn

(x) = 0, IGn
(x) = 1,FGn

(x) = 1 if x ̸= n. Clearly, for each n ∈ N, Gn

is an NPO set in (N, τ). Obviously the collection C = {Gn : n ∈ N} is an NPOC of N but it has no finite
NPOSC. Therefore (N, τ) is not a neutrosophic pre-compact space.

Thus (N, τ) is a neutrosophic compact space but not a neutrosophic pre-compact space.

3.8 Proposition:

In an NTS, union of two neutrosophic pre-compact sets is neutrosophic pre-compact.

Proof: Let A and B be two neutrosophic pre-compact sets of an NTS (X, τ). Let C = {Gi : i ∈△} be an
NPOC of A ∪B. Then A ∪B ⊆ ∪i∈△Gi. Since A ⊆ A ∪B, so C is an NPOC of A. Since A is neutrosophic
pre-compact, so there exists a finite subcollection {G1

i , G
2
i , ..., G

m
i } of C such that A ⊆ G1

i ∪G2
i ∪ ... ∪Gm

i .
Similarly, since B is neutrosophic pre-compact, so there exists a finite subcollection {H1

i , H
2
i , ...,H

n
i } of C

such that B ⊆ H1
i ∪H2

i ∪ ... ∪Hn
i . Therefore A ∪ B ⊆ G1

i ∪G2
i ∪ ... ∪Gm

i ∪H1
i ∪H2

i ∪ ... ∪Hn
i . Thus

there exists a finite subcollection {G1
i , G

2
i , ..., G

m
i , H1

i , H
2
i , ...,H

n
i } of C such that A ∪B ⊆ G1

i ∪G2
i ∪ ... ∪

Gm
i ∪H1

i ∪H2
i ∪ ... ∪Hn

i . Therefore A ∪B is neutrosophic pre-compact. Hence proved.

3.9 Proposition:

In an NTS, finite union of neutrosophic pre-compact sets is neutrosophic pre-compact.

Proof: Immediate from 3.8.
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3.10 Proposition:

In an NTS, union of a neutrosophic pre-compact set and a neutrosophic compact set is a neutrosophic compact
set.

Proof: Obvious.

3.11 Definition:

Let (Y, τ |Y ) be a neutrosophic subspace of the NTS (X, τ). Then the set of all NPO sets G |Y in Y for which
G is an NPO set in X will be denoted by NPO(Y ), i.e., NPO(Y ) = {G |Y ⊆ Y : G |Y is an NPO set in Y
and G ⊆ X is an NPO set in X}.

3.12 Proposition:

Let (Y, τ |Y ) be a neutrosophic subspace of the NTS (X, τ) and A ⊆ Y . Then A is neutrosophic pre-compact
in X iff every cover of A by the NPO sets in NPO(Y ) has a finite subcover.

Proof: Necessary part: Let C = {Gi |Y : i ∈△} be a cover of A, where Gi |Y ∈ NPO(Y ) for each i ∈△.
Then A ⊆ ∪i∈△(Gi |Y ) ⇒ A ⊆ (∪i∈△Gi) |Y ⇒ A ⊆ ∪i∈△Gi. Clearly Gi is an NPO set in X [by 3.11] for
each i ∈△ and so, C∗ = {Gi : i ∈△} is an NPOC of A in X . Since A is pre-compact in X , so there exists a
finite subcollection {Gik : k = 1, 2, 3, ..., n} of C∗ such that A ⊆ ∪n

k=1Gik ⇒ A ⊆ (∪n
k=1Gik) |Y ⇒ A ⊆

∪n
k=1(Gik |Y ). Thus the cover C of A has a finite subcover {Gik : k = 1, 2, 3, ..., n}.

Sufficient part: Let B = {Gi : i ∈△} be an NPOC of A in X , where Gi is an NPO set in X for each i ∈△.
Then A ⊆ ∪i∈△Gi ⇒ A ⊆ (∪i∈△Gi) |Y ⇒ A ⊆ ∪i∈△(Gi |Y ). Since Gi |Y ∈ NPO(Y ) for each i ∈△[by
2.13], so B∗ = {Gi |Y : i ∈△} is a cover of A by the NPO sets in NPO(Y ). Therefore, by hypothesis,
there exists a finite subcollection {Gik |Y : k = 1, 2, 3, ..., n} of B∗ such that A ⊆ ∪n

k=1(Gik |Y ) ⇒ A ⊆
(∪n

k=1Gik) |Y ⇒ A ⊆ ∪n
k=1Gik . Thus the NPOC B of A has a finite NPOSC {Gik : k = 1, 2, 3, ..., n}.

Therefore, A is neutrosophic pre-compact in X .

3.13 Proposition:

Let (Y, τ |Y ) be a neutrosophic subspace of the NTS (X, τ) and A ⊆ Y . Then A is neutrosophic pre-Lindelöf
(resp. neutrosophic countably pre-compact) in X iff every cover (resp. countable cover) of A by the NPO sets
in NPO(Y ) has a countable (resp. finite) subcover.

Proof: Obvious from 3.12.

3.14 Proposition:

Let (Y, τ |Y ) be a neutrosophic subspace of the NTS (X, τ) and A ⊆ Y . If A is neutrosophic pre-compact in
X then A is neutrosophic compact in Y .

Proof: Let C = {Gi |Y : i ∈△} be an NOC of A in Y , where Gi |Y ∈ τ |Y for each i ∈△. Then A ⊆
∪i∈△(Gi |Y ) ⇒ A ⊆ ∪i∈△Gi. Obviously Gi ∈ τ and so, Gi is an NPO set in X for each i ∈△. Therefore,
C∗ = {Gi : i ∈△} is an NPOC of A in X . Since A is pre-compact in X , so there exists a finite subcollection
{Gik : k = 1, 2, 3, ..., n} of C∗ such that A ⊆ ∪n

k=1Gik ⇒ A ⊆ (∪n
k=1Gik) |Y ⇒ A ⊆ ∪n

k=1(Gik |Y ). Thus
the NOC C of A has a finite NOSC {Gik : k = 1, 2, 3, ..., n}. Therefore A is neutrosophic compact in Y .
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3.15 Proposition:

Let (Y, τ |Y ) be a neutrosophic subspace of the NTS (X, τ) and A ⊆ Y . If A is pre-compact in Y then A is
pre-compact in X .

Proof: Obvious.

3.16 Proposition:

If G is an NPC subset of a neutrosophic pre-compact space (X, τ) such that G∩Gc = ∅̃ then G is neutrosophic
pre-compact.

Proof: Let C = {Hi : i ∈△} be an NPOC of G. Then G ⊆ ∪i∈△Hi. Since Gc is an NPO set and since
G ∩ Gc = ∅̃, i.e., G ∪ Gc = X̃ , so D = {Hi : i ∈△} ∪ {Gc} is an NPOC of X . As X is neutrosophic
pre-compact, so there exists a finite subcollection D′ = {Hi1 , Hi2 , ...,Hin}∪{Gc} of D such that X ⊆ Hi1 ∪
Hi2 ∪ ...∪Hin ∪Gc. Therefore G ⊆ Hi1 ∪Hi2 ∪ ...∪Hin ∪Gc. But G∩Gc = ∅̃, so G ⊆ Hi1 ∪Hi2 ∪ ...∪Hin .
Thus the NPOC C of G has a finite NPOSC {Hi1 , Hi2 , ...,Hin}. Hence G is neutrosophic pre-compact set.

3.17 Proposition:

If G is an NPC subset of a neutrosophic pre-compact space (X, τ) such that G∩Gc = ∅̃ then G is neutrosophic
compact.

Proof: Immediate from 3.16.

3.18 Proposition:

If G is a neutrosophic closed subset of a neutrosophic pre-compact space (X, τ) such that G∩Gc = ∅̃ then G
is neutrosophic pre-compact.

Proof: Immediate from 3.16.

3.19 Proposition:

If G is a neutrosophic closed subset of a neutrosophic pre-compact space (X, τ) such that G∩Gc = ∅̃ then G
is neutrosophic compact.

Proof: Immediate from 3.18.

3.20 Proposition:

Let (X, τ) be an NTS. An NS A = {⟨x, TA(x), IA(x),FA(x)⟩ : x ∈ X} in X is neutrosophic pre-compact
iff for every collection C = {Gλ : λ ∈△} of NPO sets of X satisfying TA(x) ≤

∨
λ∈△ TGλ

(x), 1− IA(x) ≤∨
λ∈△(1 − IGλ

(x)) and 1 − FA(x) ≤
∨

λ∈△(1 − FGλ
(x)), there exists a finite subcollection {Gλk

: k =
1, 2, 3, ..., n} such that TA(x) ≤

∨n
k=1 TGλk

(x), 1 − IA(x) ≤
∨n

k=1(1 − IGλk
(x)) and 1 − FA(x) ≤∨n

k=1(1−FGλk
(x)).
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Proof: Necessary Part : Let C = {Gλ : λ ∈△} be any collection of NPO sets of X satisfying TA(x) ≤∨
λ∈△ TGλ

(x), 1− IA(x) ≤
∨

λ∈△(1− IGλ
(x)) and 1− FA(x) ≤

∨
λ∈△(1− FGλ

(x)). Now 1− IA(x) ≤∨
λ∈△(1 − IGλ

(x)) ⇒ 1 − IA(x) ≤ 1 − IGβ
(x) for some β ∈△ ⇒ IA(x) ≥ IGβ

(x) ⇒ IA(x) ≥∧
λ∈△ IGλ

(x). Similarly 1 − FA(x) ≤
∨

λ∈△(1 − FGλ
(x)) ⇒ FA(x) ≥

∧
λ∈△ FGλ

(x). Therefore A ⊆
∪λ∈△Gλ, i.e., C is an NPOC of A. Since A is neutrosophic pre-compact, so C has a finite NPOSC {Gλk

:
k = 1, 2, 3, · · · , n}, say. Therefore A ⊆ ∪n

k=1Gλk
. Then TA(x) ≤

∨n
k=1 TGλk

(x), IA(x) ≥
∧n

k=1 IGλk
(x)

and FA(x) ≥
∧n

k=1 FGλk
(x). Now IA(x) ≥

∧n
k=1 IGλk

(x) ⇒ IA(x) ≥ IGλm
(x) for some m, 1 ≤ m ≤ n

⇒ 1 − IA(x) ≤ 1 − IGλm
(x) for some m, 1 ≤ m ≤ n ⇒ 1 − IA(x) ≤

∨n
k=1(1 − IGλk

(x)). Similarly
FA(x) ≥

∧n
k=1 FGλk

(x) ⇒ 1−FA(x) ≤
∨n

k=1(1−FGλk
(x)). Thus TA(x) ≤

∨n
k=1 TGλk

(x), 1−IA(x) ≤∨n
k=1(1− IGλk

(x)) and 1−FA(x) ≤
∨n

k=1(1−FGλk
(x)).

Sufficient Part : Let C = {Gλ : λ ∈△} be an NPOC of A. Then A ⊆ ∪λ∈△Gλ, i.e., TA(x) ≤
∨

λ∈△ TGλ
(x),

IA(x) ≥
∧

λ∈△ IGλ
(x) and FA(x) ≥

∧
λ∈△ FGλ

(x). Now IA(x) ≥
∧

λ∈△ IGλ
(x) ⇒ IA(x) ≥ IGα

(x)
for some α ∈△ ⇒ 1 − IA(x) ≤ 1 − IGα(x) ⇒ 1 − IA(x) ≤

∨
λ∈△(1 − IGλ

(x)). Similarly FA(x) ≥∧
λ∈△ FGλ

(x) ⇒ 1 − FA(x) ≤
∨

λ∈△(1 − FGλ
(x)). Thus the collection C satisfies the condition TA(x) ≤∨

λ∈△ TGλ
(x), 1− IA(x) ≤

∨
λ∈△(1− IGλ

(x)) and 1− FA(x) ≤
∨

λ∈△(1− FGλ
(x)). By the hypothesis,

there exists a finite subcollection {Gλk
: k = 1, 2, 3, ..., n} such that TA(x) ≤

∨n
k=1 TGλk

(x), 1 − IA(x) ≤∨n
k=1(1 − IGλk

(x)) and 1 − FA(x) ≤
∨n

k=1(1 − FGλk
(x)). Now 1 − IA(x) ≤

∨n
k=1(1 − IGλk

(x)) ⇒
1 − IA(x) ≤ 1 − IGλm

(x) for some m, 1 ≤ m ≤ n ⇒ IA(x) ≥ IGλm
(x) ⇒ IA(x) ≥

∧n
k=1 IGλk

(x).
Similarly we shall have FA(x) ≥

∧n
k=1 FGλk

(x). Therefore A ⊆ ∪n
k=1Gλk

, i.e., the NPOC C of A has a
finite NPOSC {Gλk

: k = 1, 2, 3, · · · , n}. Therefore, A is neutrosophic pre-compact set.

Hence proved.

3.21 Proposition:

Let (X, τ) be an NTS. Then X is neutrosophic compact iff for every collection C = {Gλ : λ ∈△} of NPO
sets of X satisfying

∨
λ∈△ TGλ

(x) = 1,
∨

λ∈△(1 − IGλ
(x)) = 1 and

∨
λ∈△(1 − FGλ

(x)) = 1, there exists
a finite subcollection {Gλk

: k = 1, 2, 3, ..., n} such that
∨n

k=1 TGλk
(x) = 1,

∨n
k=1(1 − IGλk

(x)) = 1 and∨n
k=1(1−FGλk

(x)) = 1.

Proof: Immediate from 3.20.

3.22 Definition:

Let (X, τ) be an NTS. A collection {Gλ : λ ∈ ∆} of neutrosophic sets of X is said to have the finite
intersection property (FIP, in short) iff every finite subcollection {Gλk

: k = 1, 2, · · · , n} of {Gλ : λ ∈ ∆}
satisfies the condition

⋂n
k=1 Gλk

̸= ∅̃, where △ is an index set.

3.23 Proposition:

An NTS (X, τ) is neutrosophic pre-compact iff every collection of NPC sets with the FIP has a non-empty
intersection.

Proof: Necessary part: Let A = {Ni : i ∈△} be an arbitrary collection of NPC sets with the FIP. We show
that ∩i∈△Ni ̸= ∅̃. On the contrary, suppose that ∩i∈△Ni = ∅̃. Then (∩i∈△Ni)

c = (∅̃)c ⇒ ∪i∈△N
c
i = X̃ .

Therefore B = {N c
i : Ni ∈ A} is an NPOC of X and so, B has a finite NPOSC {N c

i1
, N c

i2
, ..., N c

ik
}, say.

Then ∪k
j=1N

c
ij
= X̃ ⇒ ∩k

j=1Nij = ∅̃, which is a contradiction as A has FIP. Therefore ∩i∈△Ni ̸= ∅̃.

Sufficient part: On the contrary, suppose that X is not neutrosophic pre-compact. Then there must exist an
NPOC of X which will have no finite NPOSC. Let C = {Gi : i ∈△} be an NPOC of X which has no
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finite subcover. Then for every finite subcollection {Gi1 , Gi2 , ..., Gik} of C, we have ∪k
j=1Gij ̸= X̃ ⇒

∩k
j=1G

c
ij

̸= ∅̃. Therefore {Gc
i : Gi ∈ C} is a collection of NPC sets having the FIP. By the assumption,

∩i∈△G
c
i ̸= ∅̃ ⇒ ∪i∈△Gi ̸= X̃ . This implies that C is not an NPOC of X , which is a contradiction. Therefore,

NPOC C of X must have a finite NPOSC. Therefore X is neutrosophic pre-compact.

Hence proved.

3.24 Proposition:

Let f be a neutrosophic pre-continuous function from an NTS (X, τ) to the NTS (Y, σ). If A is neutrosophic
pre-compact set in X then f(A) is neutrosophic compact set in Y .

Proof: Let B = {Gλ : λ ∈△} be an NOC of f(A). Then f(A) ⊆ ∪λ∈△Gλ ⇒ f−1(f(A)) ⊆ f−1(∪λ∈△Gλ)
⇒ f−1(f(A)) ⊆ ∪λ∈∆f

−1(Gλ) ⇒ A ⊆ ∪λ∈∆f
−1(Gλ). Since Gλ is σ-open NS in Y , so f−1(Gλ) is

τ -NPO set in X as f is pre-continuous. Therefore C = {f−1(Gλ) : λ ∈ ∆} is an NPOC of A. Since A is
neutrosophic pre-compact, so C has a finite NPOSC {f−1(Gλ1

), f−1(Gλ2
), · · · , f−1(Gλn

)}, say. Therefore
A ⊆ ∪n

i=1f
−1(Gλi

) ⇒ f(A) ⊆ f(∪n
i=1f

−1(Gλi
)) ⇒ f(A) ⊆ ∪n

i=1f(f
−1(Gλi

)) ⇒ f(A) ⊆ ∪n
i=1Gλi

.
Thus the NOC B of f(A) has a finite NOSC. Therefore f(A) is neutrosophic compact. Hence proved.

3.25 Proposition:

Let f be a neutrosophic continuous function from an NTS (X, τ) to the NTS (Y, σ). If A is neutrosophic
pre-compact in X then f(A) is neutrosophic compact in Y .

Proof: Obvious from 3.24.

3.26 Proposition:

Let f be a neutrosophic pre-continuous function from an NTS (X, τ) onto the NTS (Y, σ). If (X, τ) is
neutrosophic pre-compact then (Y, σ) is neutrosophic compact.

Proof: Since f is onto, so f(X̃) = Ỹ . Let B = {Gλ : λ ∈ ∆} be an NOC of Y . Then ∪λ∈△Gλ = Ỹ ⇒
f−1(∪λ∈∆Gλ) = f−1(Ỹ ) ⇒ ∪λ∈∆f

−1(Gλ) = X̃ . Since Gλ is σ-open NS in Y , so f−1(Gλ) is τ -NPO set
in X as f is pre-continuous. Therefore C = {f−1(Gλ) : λ ∈ ∆} is an NPOC of X . Since X is pre-compact,
so C has a finite NPOSC {f−1(Gλ1

), f−1(Gλ2
), · · · , f−1(Gλn

}), say. Therefore ∪n
i=1f

−1(Gλi
) = X̃ ⇒

f(∪n
i=1f

−1(Gλi
)) = f(X̃) ⇒ ∪n

i=1f(f
−1(Gλi

)) = Ỹ ⇒ ∪n
i=1Gλi

= Ỹ . Thus the NOC B of Y has a finite
NOSC. Therefore Y is neutrosophic compact. Hence proved.

3.27 Proposition:

Let f be a neutrosophic continuous function from an NTS (X, τ) onto the NTS (Y, σ). If (X, τ) is neutro-
sophic pre-compact then (Y, σ) is neutrosophic compact.

Proof: Obvious from 3.26.
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3.28 Proposition:

Let f be a neutrosophic pre-continuous function from an NTS (X, τ) onto the NTS (Y, σ). If X is neutrosophic
countably pre-compact then Y is neutrosophic countably compact.

Proof: Since f is onto, so f(X̃) = Ỹ . Let A = {Gλ : λ ∈ ∆} be a countable NOC of Y . Then
∪λ∈△Gλ = Ỹ ⇒ f−1(∪λ∈∆Gλ) = f−1(Ỹ ) ⇒ ∪λ∈∆f

−1(Gλ) = X̃ . Since Gλ is σ-open NS in Y , so
f−1(Gλ) is τ -NPO set in X as f is pre-continuous. Therefore C = {f−1(Gλ) : λ ∈ ∆} is an NPOC
of X . Obviously C is countable as A is countable. Again since X is neutrosophic countably pre-compact,
so C has a finite NPOSC {f−1(Gλ1), f

−1(Gλ2), · · · , f−1(Gλn}), say. Therefore ∪n
i=1f

−1(Gλi) = X̃ ⇒
f(∪n

i=1f
−1(Gλi

)) = f(X̃) ⇒ ∪n
i=1f(f

−1(Gλi
)) = Ỹ ⇒ ∪n

i=1Gλi
= Ỹ . Thus the countable NOC A of Y

has a finite NPOSC. Hence Y is neutrosophic countably compact.

3.29 Proposition:

Let f be a neutrosophic continuous function from an NTS (X, τ) onto the NTS (Y, σ). If X is neutrosophic
countably pre-compact then Y is neutrosophic countably compact.

Proof: Immediate from 3.28.

3.30 Proposition:

Let f be a neutrosophic pre-continuous function from an NTS (X, τ) onto the NTS (Y, σ). If X is neutrosophic
pre-Lindelöf then Y is neutrosophic Lindelöf.

Proof: Since f is onto, so f(X̃) = Ỹ . Let A = {Ai : i ∈△} be an NOC of Y . Then Ỹ = ∪i∈△Ai ⇒
f−1(Ỹ ) = f−1(∪i∈△Ai) ⇒ X̃ = ∪i∈△f

−1(Ai) ⇒ {f−1(Ai) : i ∈△} is an NPOC of X . Since X is
neutrosophic pre-Lindelöf, so {f−1(Ai) : i ∈△} has a countable NPOSC B = {f−1(Aik) : k = 1, 2, 3, . . .},
say. Therefore X̃ = f−1(Ai1) ∪ f−1(Ai2) ∪ f−1(Ai3) ∪ . . .. This gives f(X̃) = f [f−1(Ai1) ∪ f−1(Ai2) ∪
f−1(Ai3)∪ . . .] ⇒ Ỹ = f(f−1(Ai1))∪ f(f−1(Ai2))∪ f(f−1(Ai3))∪ . . . ⇒ Ỹ = Ai1 ∪Ai2 ∪Ai3 ∪ . . . ⇒
{Aik : k = 1, 2, 3, · · · } an NOC of Y . Since B is countable, so {Aik : k = 1, 2, 3, · · · } is also countable.
Therefore the NOC A of Y has a countable NOSC {Aik : k = 1, 2, 3, · · · } and so, Y is neutrosophic Lindelöf.
Hence proved.

3.31 Proposition:

Let f be a neutrosophic continuous function from an NTS (X, τ) onto the NTS (Y, σ). If X is neutrosophic
pre-Lindelöf then Y is neutrosophic Lindelöf.

Proof: Immediate from 3.30.

3.32 Proposition:

Let f be a neutrosophic pre-open function from an NTS (X, τ) to the NTS (Y, σ). If A ⊆ Y is neutrosophic
pre-compact in Y then f−1(A) is neutrosophic compact in X .

Proof: Let B = {Gλ : λ ∈△} be an NOC of f−1(A). Then f−1(A) ⊆ ∪λ∈△Gλ ⇒ A ⊆ f(∪λ∈△Gλ) ⇒
A ⊆ ∪λ∈△f(Gλ). Since Gλ is τ -open set, so f(Gλ) is σ-NPO set for each λ ∈△ as f is a pre-open function.
Therefore, C = {f(Gλ) : λ ∈△} is an NPOC of A. Since A is neutrosophic pre-compact, so C has a finite
NPOSC {f(Gλ1

), f(Gλ2
), f(Gλ3

), ..., f(Gλn
)}, say. Therefore A ⊆ ∪n

i=1f(Gλi
) ⇒ A ⊆ f(∪n

i=1Gλi
) ⇒

f−1(A) ⊆ ∪n
i=1Gλi

. Thus the NOC B of f−1(A) has a finite NOSC {Gλ1
, Gλ2

, Gλ3
, ..., Gλn

}. Therefore
f−1(A) is neutrosophic compact in X . Hence proved.
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3.33 Proposition:

Let f be a neutrosophic pre-open function from an NTS (X, τ) onto the NTS (Y, σ). If (Y, σ) is neutrosophic
pre-compact (resp. neutrosophic countably pre-compact, neutrosophic pre-Lindelöf) then (X, τ) is neutro-
sophic compact (resp. neutrosophic countably compact, neutrosophic Lindelöf).

Proof: Immediate from 3.32 as f is onto.

3.34 Proposition:

Let f be a neutrosophic open function from an NTS (X, τ) onto the NTS (Y, σ). If (Y, σ) is neutrosophic pre-
compact (resp. neutrosophic countably pre-compact, neutrosophic pre-Lindelöf) then (X, τ) is neutrosophic
compact (resp. neutrosophic countably compact, neutrosophic Lindelöf).

Proof: Obvious from 3.33.

3.35 Definition:

Let f be a function from an NTS (X, τ) to the NTS (Y, σ). Then f is called a neutrosophic pre∗-open function
if f(G) is an NPO set in Y for every NPO set G in X .

3.36 Proposition:

Let f be a neutrosophic pre-∗-open function from an NTS (X, τ) to the NTS (Y, σ) and A ∈ N (Y ). If A is
neutrosophic pre-compact in Y then f−1(A) is neutrosophic pre-compact in X .

Proof: Let B = {Gλ : λ ∈△} be an NPOC of f−1(A). Then f−1(A) ⊆ ∪λ∈△Gλ ⇒ A ⊆ f(∪λ∈△Gλ) ⇒
A ⊆ ∪λ∈△f(Gλ). Since Gλ is τ -NPO set, so f(Gλ) is σ-NPO set for each λ ∈△ as f is a pre∗-open function.
Therefore, C = {f(Gλ) : Gλ ∈ B} is an NPOC of A. Since A is neutrosophic pre-compact, so C has a finite
NPOSC {f(Gλ1

), f(Gλ2
), f(Gλ3

), ..., f(Gλn
)}, say. Therefore A ⊆ ∪n

i=1f(Gλi
) ⇒ A ⊆ f(∪n

i=1Gλi
) ⇒

f−1(A) ⊆ ∪n
i=1Gλi

. Thus the NPOC B of f−1(A) has a finite NPOSC {Gλ1
, Gλ2

, Gλ3
, ..., Gλn

}. Therefore
f−1(A) is neutrosophic pre-compact in X . Hence proved.

3.37 Proposition:

Let f be a neutrosophic pre-∗-open function from an NTS (X, τ) onto the NTS (Y, σ). If (Y, σ) is neutro-
sophic pre-compact (resp. neutrosophic countably pre-compact, neutrosophic pre-Lindelöf) then (X, τ) is also
neutrosophic pre-compact (resp. neutrosophic countably pre-compact, neutrosophic pre-Lindelöf).

Proof: Immediate from 3.36 as f is onto.

3.38 Definition:

Let f be a neutrosophic function from an NTS (X, τ) to the NTS (Y, σ). Then f is called a neutrosophic
pre-irresolute function if f−1(G) is an NPO set in X for every NPO set G in Y .
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3.39 Proposition:

Let f be a neutrosophic pre-irresolute function from an NTS (X, τ) to the NTS (Y, σ). If A is neutrosophic
pre-compact in X then f(A) is also neutrosophic pre-compact in Y .

Proof: Let B = {Gλ : λ ∈ ∆} be an NPOC of f(A) in Y . Then f(A) ⊆ ∪λ∈△Gλ ⇒ A ⊆ f−1(∪λ∈∆Gλ) ⇒
A ⊆ ∪λ∈∆f

−1(Gλ). Since Gλ is σ-NPO set in Y , so f−1(Gλ) is a τ -NPO set in X as f is a neutrosophic
pre-irresolute function. Therefore C = {f−1(Gλ) : λ ∈ ∆} is an NPOC of A in X . Since A is neutrosophic
pre-compact in X , so C has a finite NPOSC {f−1(Gλ1

), f−1(Gλ2
), · · · , f−1(Gλn

)}, say. Therefore A ⊆
∪n
i=1f

−1(Gλi
) ⇒ f(A) ⊆ f(∪n

i=1f
−1(Gλi

)) ⇒ f(A) ⊆ ∪n
i=1f(f

−1(Gλi
)) ⇒ f(A) ⊆ ∪n

i=1Gλi
. Thus the

NPOC B of f(A) has a finite NPOSC {Gλ1
, Gλ2

, · · · , Gλn
}. Therefore f(A) is neutrosophic pre-compact.

Hence proved.

3.40 Proposition:

Let f be a neutrosophic pre-irresolute function from an NTS (X, τ) onto the NTS (Y, σ). If (X, τ) is neutro-
sophic pre-compact (resp. neutrosophic countably pre-compact, neutrosophic pre-Lindelöf) then (Y, σ) is also
neutrosophic pre-compact (resp. neutrosophic countably pre-compact, neutrosophic pre-Lindelöf).

Proof: Obvious from 3.39.

3.41 Definition :

Let(X, τ) be an NTS and NPO(X) be the collection of all NPO sets in X . A subcollection B of NPO(X)
is called a neutrosophic pre-base (Np-base, for short) for X iff for each A ∈ NPO(X), there exists a subcol-
lection {Ai : i ∈ ∆} of B such that A = ∪{Ai : i ∈△}, where △ is an index set.

A subcollection B∗ of NPO(X) is called a neutrosophic pre-subbase (Np-subbase, for short) for X iff the
finite intersection of members of B∗ forms a neutrosophic pre-base for X .

3.42 Definition:

An NTS (X, τ) is said to be neutrosophic pre-CII space iff X has a countable neutrosophic pre-base, i.e., an
NTS (X, τ) is said to be pre-CII space iff there exists a countable subcollection B of NPO(X) such that
every member of NPO(X) can be expressed as the union of some members of B.

3.43 Proposition:

Let B be an Np-base for an NTS (X, τ). Then X is neutrosophic pre-compact iff every NPOC of X by the
members of B has a finite NPOSC.

Proof: Necessary Part : Obvious.

Sufficient Part : Let B = {Bα : α ∈△} be the Np-base. Also let C = {Gλ : λ ∈△} be an NPOC of
X . Then each member Gλ of C is the union of some members of B and the totality of such members of
B is evidently an NPOC of X . By the hypothesis, this collection of members of B has a finite NPOSC
D = {Bαj

: j = 1, 2, 3, · · · , n}, say. Clearly for each Bαj
in D, there is a Gλj

in C such that Bαj
⊆ Gλj

.
Therefore the finite subcollection {Gλj

: j = 1, 2, 3, · · · , n} of C is an NPOC of X , i.e., the NPOC C of X
has a finite NPOSC {Gλj

: j = 1, 2, 3, · · · , n}. Therefore X is neutrosophic pre-compact.
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3.44 Proposition:

Let (X, τ) be a neutrosophic countably pre-compact space. If X is pre-CII then X neutrosophic pre-compact.

Proof: Let D = {Ai : i ∈△} be any NPOC of X . Since X is pre-CII , so there exists a countable Np-base B
= {Bn : n = 1, 2, 3, · · · } for X . Then each Ai ∈ D can be expressed as the union of some members of B.
Let Ai =

⋃i0
k=1 Bnk

, where Bnk
∈ B and i0 may be infinity. Clearly B0 = {Bnk

} is an NPOC of X . Also
B0 is countable as B0 ⊆ B. Therefore, B0 is a countable NPOC of X . Since X is countably pre-compact,
so B0 has a finite NPOSC B′, say. Since by construction, each member of B′ is contained in one member Ai

of D, so these Ai’s form a finite NPOC of X . Thus the NPOC D of X has a finite NPOSC. Therefore X is
neutrosophic pre-compact. Hence Proved.

3.45 Remark:

In view of 3.3 and 3.44, it is evident that if an NTS (X, τ) is pre-CII then neutrosophic pre-compactness and
neutrosophic countably pre-compactness are equivalent.

3.46 Proposition:

If an NTS (X, τ) is pre-CII then it is neutrosophic pre-Lindelöf.

Proof: Let A = {Ai : i ∈△} be an NPOC of X . Since X is pre-CII , so there exists a countable Np-base B
= {Bn : n = 1, 2, 3, · · · } for X . Then each Ai ∈ A can be expressed as the union of some members of B.
Let Ai =

⋃i0
k=1 Bnk

, where Bnk
∈ B and i0 may be infinity. Let B0 = {Bnk

}. Then B0 is an NPOC of X .
Also B0 is countable as B0 ⊆ B. Therefore, B0 is a countable NPOC of X . By construction, each member of
B0 is contained in one Ai of A. So, these Ai’s form a countable NPOC of X . Thus the NPOC A of X has a
countable NPOSC. Therefore X is neutrosophic pre-Lindelöf.

3.47 Proposition:

Let β be an Np-subbase of an NTS (X, τ). Then X is neutrosophic pre-compact iff for every collection of
NPC sets chosen from βc having the FIP, there is a non-empty intersection.

Proof: Necessary part : Immediate from 3.23.

Sufficient Part : On the contrary, let us suppose that X is not pre-compact. Then by 3.23, there exists a
collection C = {Gi : i ∈ I} of NPC of X having the FIP such that ∩i∈△Gi = ∅̃. The collection of all such
collections C can be arranged in an order by using the classical inclusion(⊆) and the collection will certainly
have an upper bound. Therefore by Zorn’s lemma, there will be a maximal collection of all the collections C.
Let P = {Pj : j ∈ J} be the maximal collection. This collection P has the following properties :
(i) ∅̃ /∈ P (ii) P ∈ P, P ⊆ Q ⇒ Q ∈ P (iii) P,Q ∈ P ⇒ P ∩ Q ∈ P (iv) ∩(P ∩ βc) = ∅̃. Clearly the
property (iv) delivers a contradiction to the hypothesis. Therefore X is pre-compact.

Hence proved.

4 Neutrosophic local pre-compactness

4.1 Definition:

An NTS (X, τ) is said to be a neutrosophic locally pre-compact space iff for every NP xα,β,γ in X , there
exists a τ -NPO set G such that xα,β,γ ∈ G and G is neutrosophic pre-compact in X .
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4.2 Proposition:

Every neutrosophic pre-compact space is a neutrosophic locally pre-compact space.

Proof: Let (X, τ) be a neutrosophic pre-compact space and let xα,β,γ be an NP in X . Since X is neutrosophic
pre-compact and since X̃ is an NPO set such that xα,β,γ ∈ X̃ , so, (X, τ) is a neutrosophic locally pre-compact
space.

4.3 Proposition:

Let f be a neutrosophic pre-∗-open and pre-irresolute function from an NTS space (X, τ) to the NTS (Y, σ).
If (Y, σ) neutrosophic locally pre-compact then (X, τ) is also a neutrosophic locally pre-compact space.

Proof: Let xα,β,γ be any NP in X . Then there exists an NP yp,q,r in Y such that f(xα,β,γ) = yp,q,r. Since
yp,q,r ∈ Y and Y neutrosophic locally pre-compact, so there exists a σ-NPO set G such that yp,q,r ∈ G
and G is neutrosophic pre-compact in Y . Now yp,q,r ∈ G ⇒ f(xα,β,γ) ∈ G ⇒ xα,β,γ ∈ f−1(G). Since
f is neutrosophic pre-∗-open and G is neutrosophic pre-compact in Y , so by 3.36, f−1(G) is neutrosophic
pre-compact in X . Again since f is a neutrosophic pre-irresolute function, so f−1(G) is a τ -NPO set. Thus
for any any NP xα,β,γ in X , there exists a τ -NPO set f−1(G) such that xα,β,γ ∈ f−1(G) and f−1(G) is
neutrosophic pre-compact in X . Therefore (X, τ) is neutrosophic locally pre-compact space.

4.4 Proposition:

Let f be a neutrosophic pre∗-open and pre-irresolute function from an NTS (X, τ) onto the NTS (Y, σ). If X
is neutrosophic locally pre-compact then Y is neutrosophic locally pre-compact.

Proof: Let yp,q,r be any NP in Y . Since f is onto, so there is an NP xα,β,γ in X such that f(xα,β,γ) = yp,q,r.
Since xα,β,γ ∈ X and X neutrosophic locally pre-compact, so there exists a τ -NPO set G such that xα,β,γ ∈ G
and G is neutrosophic pre-compact in X . Now xα,β,γ ∈ G ⇒ f(xα,β,γ) ∈ f(G) ⇒ yp,q,r ∈ f(G). Since
f is neutrosophic pre-irresolute and G is neutrosophic pre-compact in X , so by 3.39, f(G) is neutrosophic
pre-compact in Y . Again since f is a neutrosophic pre∗-open function, so f(G) is a σ-NPO set. Thus for
any any NP yp,q,r in Y , there exists a σ-NPO set f(G) such that yp,q,r ∈ f(G) and f(G) is neutrosophic
pre-compact in Y . Therefore (Y, σ) is neutrosophic locally pre-compact space.

5 Conclusions

In this article, we have defined neutrosophic pre-open cover with the help of neutrosophic pre-open sets and
then we have defined neutrosophic pre-compact space, neutrosophic countably pre-compact space, neutro-
sophic pre-Lindelöf space and investigated various covering properties. We have proved that every neutro-
sophic pre-compact space is a neutrosophic compact space but the converse is not true. We have shown that if a
neutrosophic topological space is neutrosophic pre-CII then neutrosophic pre-compactness and neutrosophic
countably pre-compactness are equivalent. In 3.40, we have established that neutrosophic pre-compactness
(resp. neutrosophic countably pre-compactness, neutrosophic pre-Lindelöfness) is preserved under a neutro-
sophic pre-irresolute function. In 3.47, we have also stated and proved “Alexander subbase lemma” in case of
a neutrosophic pre-compact space with the help of neutrosophic pre-subbase. In the long run, we have defined
neutrosophic locally pre-compact space and put forward a few propositions with proofs. Hope that the findings
in this article will assist the research fraternity to move forward for the development of different aspects of
neutrosophic topology.
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