

Neutrosophic Pre-compactness

Sudeep Dey ^{1,2}, Gautam Chandra Ray^{2*} ¹Department of Mathematics, Science College, Kokrajhar, Assam, India ²Department of Mathematics, Central Institute of Technology, Kokrajhar, Assam, India

Emails: sudeep.dey.1976@gmail.com; gautomofcit@gmail.com

Abstract

The purpose of this article is to study some covering properties in neutrosophic topological spaces via neutrosophic pre-open sets. We define neutrosophic pre-open cover, neutrosophic pre-compactness, neutrosophic countably pre-compactness and neutrosophic pre-Lindelöfness and study various properties connecting them. We study some properties involving neutrosophic continuous and neutrosophic pre-continuous functions. We also define neutrosophic pre-base, neutrosophic pre-subbase, neutrosophic pre*-open function, neutrosophic pre-irresolute function and study some properties. In addition to that, we define and study neutrosophic local pre-compactness.

Keywords: Neutrosophic pre-compact space; Neutrosophic countably pre-compact space; Neutrosophic pre-Lindelöf space; Neutrosophic Np-base; Neutrosophic Np-subbase; Neutrosophic pre-irresolute function; Neutrosophic local pre-compact space.

1 Introduction

The notion of neutrosophic set was coined by Florentin Smarandache.^{13–15} Since then, Smarandache and other researchers^{6,18,20} have studied and further developed the theory of neutrosophic sets. Neutrosophic set is an extended form of intuitionistic fuzzy set developed by K.Atanassov¹ in 1986. The concept of neutrosophic sets has found various applications in different fields, particularly in situations where uncertainty, vagueness, and indeterminacy are present.

In 2012, Salama & Alblowi¹⁶ developed the concept of neutrosophic topological space, which is a generalization of the intuitionistic fuzzy topological space that was originally proposed by D.Coker⁵ in 1997. In 2016, Karatas and Kuru⁹ redefined the single-valued neutrosophic set operations and introduced neutrosophic topology. The authors then investigated some important properties of neutrosophic topological spaces. Since then, many researchers^{2,4,10,11,17,19} have further developed various aspects of neutrosophic topology. The idea of fuzzy pre-compact space was introduced by Jaber⁸ in 2020. Rao & Rao,¹² in 2017, developed the concepts of neutrosophic pre-open and pre-closed sets and thereafter, Arokiarani et.al.³ developed the idea of neutrosophic pre-open, pre-closed, pre-continuous functions. Recently, Dey & Ray⁷ studied separation properties using neutrosophic pre-open sets.

In this write-up, we first define neutrosophic pre-open cover using neutrosophic pre-open sets. After that, we define neutrosophic pre-compact space, neutrosophic countably pre-compact space and neutrosophic pre-Lindelöf space via neutrosophic pre-open covers and study various covering properties involving them. We also define neutrosophic pre-base, neutrosophic pre-subbase, neutrosophic pre*-open function, neutrosophic pre-irresolute function and investigate some covering properties. In the long run, we define and study neutro-sophic local pre-compactness.

2 Preliminaries

2.1 Definition:¹³

Let X be the universe of discourse. A neutrosophic set A over X is defined as $A = \{\langle x, \mathcal{T}_A(x), \mathcal{I}_A(x), \mathcal{F}_A(x) \rangle : x \in X\}$, where the functions $\mathcal{T}_A, \mathcal{I}_A, \mathcal{F}_A$ are real standard or non-standard subsets of $]^{-}0, 1^+[$, i.e., $\mathcal{T}_A : X \to]^{-}0, 1^+[$, $\mathcal{I}_A : X \to]^{-}0, 1^+[$, $\mathcal{F}_A : X \to]^{-}0, 1^+[$, $\mathcal{I}_A : X \to]^{-}0, 1^+[$,

The neutrosophic set A is characterized by the truth-membership function \mathcal{T}_A , indeterminacy-membership function \mathcal{I}_A , falsehood-membership function \mathcal{F}_A .

2.2 Definition:²⁰

Let X be the universe of discourse. A single valued neutrosophic set A over X is defined as $A = \{\langle x, \mathcal{T}_A(x), \mathcal{T}_A(x), \mathcal{F}_A(x) \rangle : x \in X\}$, where $\mathcal{T}_A, \mathcal{T}_A, \mathcal{F}_A$ are functions from X to [0, 1] and $0 \leq \mathcal{T}_A(x) + \mathcal{T}_A(x) + \mathcal{F}_A(x) \leq 3$.

The set of all single valued neutrosophic sets over X is denoted by $\mathcal{N}(X)$.

Throughout this article, a neutrosophic set (NS, for short) will mean a single-valued neutrosophic set.

2.3 Definition:⁹

Let $A, B \in \mathcal{N}(X)$. Then

- (i) (Inclusion): If $\mathcal{T}_A(x) \leq \mathcal{T}_B(x), \mathcal{I}_A(x) \geq \mathcal{I}_B(x), \mathcal{F}_A(x) \geq \mathcal{F}_B(x)$ for all $x \in X$ then A is said to be a neutrosophic subset of B and which is denoted by $A \subseteq B$.
- (ii) (Equality): If $A \subseteq B$ and $B \subseteq A$ then A = B.
- (iii) (Intersection): The intersection of A and B, denoted by $A \cap B$, is defined as $A \cap B = \{ \langle x, \mathcal{T}_A(x) \land \mathcal{T}_B(x), \mathcal{I}_A(x) \lor \mathcal{I}_B(x), \mathcal{F}_A(x) \lor \mathcal{F}_B(x) \rangle : x \in X \}.$
- (iv) (Union): The union of A and B, denoted by $A \cup B$, is defined as $A \cup B = \{\langle x, \mathcal{T}_A(x) \lor \mathcal{T}_B(x), \mathcal{I}_A(x) \land \mathcal{I}_B(x), \mathcal{F}_A(x) \land \mathcal{F}_B(x) \rangle : x \in X \}.$
- (v) (Complement): The complement of the NS A, denoted by A^c , is defined as $A^c = \{\langle x, \mathcal{F}_A(x), 1 \mathcal{I}_A(x), \mathcal{T}_A(x) \rangle : x \in X\}$
- (vi) (Universal Set): If $\mathcal{T}_A(x) = 1$, $\mathcal{I}_A(x) = 0$, $\mathcal{F}_A(x) = 0$ for all $x \in X$ then A is said to be neutrosophic universal set and which is denoted by \tilde{X} .
- (vii) (Empty Set): If $\mathcal{T}_A(x) = 0$, $\mathcal{I}_A(x) = 1$, $\mathcal{F}_A(x) = 1$ for all $x \in X$ then A is said to be neutrosophic empty set and which is denoted by $\tilde{\emptyset}$.

2.4 Definition:¹¹

Let $\mathcal{N}(X)$ be the set of all neutrosophic sets over X. An NS $P = \{\langle x, \mathcal{T}_P(x), \mathcal{I}_P(x), \mathcal{F}_P(x) \rangle : x \in X\}$ is called a neutrosophic point (NP, for short) iff for any element $y \in X$, $\mathcal{T}_P(y) = \alpha$, $\mathcal{I}_P(y) = \beta$, $\mathcal{F}_P(y) = \gamma$ for y = x and $\mathcal{T}_P(y) = 0$, $\mathcal{I}_P(y) = 1$, $\mathcal{F}_P(y) = 1$ for $y \neq x$, where $0 < \alpha \le 1, 0 \le \beta < 1, 0 \le \gamma < 1$. A neutrosophic point $P = \{\langle x, \mathcal{T}_P(x), \mathcal{I}_P(x), \mathcal{F}_P(x) \rangle : x \in X\}$ will be denoted by by $x_{\alpha,\beta,\gamma}$. For the NP $x_{\alpha,\beta,\gamma}$, x will be called its support. The complement of the NP $x_{\alpha,\beta,\gamma}$ will be denoted by $x_{\alpha,\beta,\gamma}^c$ or $(x_{\alpha,\beta,\gamma})^c$.

2.5 Definition:¹⁷

Let X and Y be two non-empty sets and $f : X \to Y$ be a function. Also let $A \in \mathcal{N}(X)$ and $B \in \mathcal{N}(Y)$. Then

(1) Image of A under f is defined by

$$f(A) = \{ \langle y, f(\mathcal{T}_A)(y), f(\mathcal{I}_A)(y), (1 - f(1 - \mathcal{F}_A))(y) \rangle : y \in Y \}, \text{ where}$$

$$f(\mathcal{T}_A)(y) = \begin{cases} \sup\{\mathcal{T}_A(x) : x \in f^{-1}(y)\} & \text{if } f^{-1}(y) \neq \emptyset \\ 0 & \text{if } f^{-1}(y) = \emptyset \end{cases}$$

$$f(\mathcal{I}_A)(y) = \begin{cases} \inf\{\mathcal{I}_A(x) : x \in f^{-1}(y)\} & \text{if } f^{-1}(y) \neq \emptyset \\ 1 & \text{if } f^{-1}(y) = \emptyset \end{cases}$$

$$(1 - f(1 - \mathcal{F}_A))(y) = \begin{cases} \inf\{\mathcal{F}_A(x) : x \in f^{-1}(y)\} & \text{if } f^{-1}(y) \neq \emptyset \\ 1 & \text{if } f^{-1}(y) = \emptyset \end{cases}$$

(2) Pre-image of B under f is defined by $f^{-1}(B) = \{ \langle x, f^{-1}(\mathcal{T}_B)(x), f^{-1}(\mathcal{I}_B)(x), f^{-1}(\mathcal{F}_B)(x) \rangle : x \in X \}$

2.6 Theorem:¹⁷

Let $f: X \to Y$ be a function. Also let $A, A_i \in \mathcal{N}(X), i \in I$ and $B, B_j \in \mathcal{N}(Y), j \in J$. Then the following hold.

- (i) $A_1 \subseteq A_2 \Leftrightarrow f(A_1) \subseteq f(A_2), B_1 \subseteq B_2 \Leftrightarrow f^{-1}(B_1) \subseteq f^{-1}(B_2).$
- (ii) $A \subseteq f^{-1}(f(A))$ and if f is injective then $A = f^{-1}(f(A))$.
- (iii) $f^{-1}(f(B)) \subseteq B$ and if f is surjective then $f^{-1}(f(B)) = B$.
- (iv) $f^{-1}(\cup B_j) = \cup f^{-1}(B_j)$ and $f^{-1}(\cap B_j) = \cap f^{-1}(B_j)$.
- (v) $f(\cup A_i) = \cup f(A_i), f(\cap A_i) \subseteq \cap f(A_i)$ and if f is injective then $f(\cap A_i) = \cap f(A_i)$.
- (vi) $f^{-1}(\tilde{\emptyset}_Y) = \tilde{\emptyset}_X, f^{-1}(\tilde{Y}) = \tilde{X}.$
- (vii) $f(\tilde{\emptyset}_X) = \tilde{\emptyset}_Y, f(\tilde{X}) = \tilde{Y}$ if f is surjective.

2.7 Definition:⁹

Let $\tau \subseteq \mathcal{N}(X)$. Then τ is called a neutrosophic topology on X if

- (i) $\tilde{\emptyset}$ and \tilde{X} belong to τ .
- (ii) An arbitrary union of neutrosophic sets in τ is in τ .
- (iii) The intersection of any two neutrosophic sets in τ is in τ .

If τ is a neutrosophic topology on X then the pair (X, τ) is called a neutrosophic topological space (NTS, for short) over X. The members of τ are called neutrosophic open sets in X. If for a neutrosophic set A, $A^c \in \tau$ then A is said to be a neutrosophic closed set in X.

2.8 Definition:⁹

Let (X, τ) be a NTS and $A \in \mathcal{N}(X)$. Then the neutrosophic

- (i) interior of A, denoted by int(A), is defined as $int(A) = \bigcup \{G : G \in \tau \text{ and } G \subseteq A\}$.
- (ii) closure of A, denoted by cl(A), is defined as $cl(A) = \bigcap \{G : G \text{ is a neutrosophic closed set and } G \supseteq A \}$.

2.9 Definition:¹²

Let (X, τ) be an NTS and $A \in \mathcal{N}(X)$. Then

- (i) A is called a neutrosophic pre-open set (NPO, for short) in X iff $A \subseteq int(cl(A))$.
- (ii) A is called a neutrosophic pre-closed (NPC, for short) set in X iff $cl(int(A)) \subseteq A$.

If G is an NPO (resp. NPC) set in X then we may also say that G is a τ -NPO (resp. τ -NPC) set.

2.10 Theorem:¹²

Let (X, τ) be an NTS and $A \in \mathcal{N}(X)$. Then

- (i) A is an NPC set in X if and only if A^c is an NPO set in X.
- (ii) Every neutrosophic open set in an NTS is an NPO set.
- (iii) Every neutrosophic closed set in an NTS is an NPC set.

2.11 Definition:¹⁹

Let f be a function from an NTS (X, τ) to the NTS (Y, σ) . Then

- (i) f is called a neutrosophic open function if $f(G) \in \sigma$ for all $G \in \tau$
- (ii) f is called a neutrosophic continuous function if $f^{-1}(G) \in \tau$ for all $G \in \sigma$.

2.12 Definition:³

Let f be a function from an NTS (X, τ) to the NTS (Y, σ) . Then f is called a neutrosophic

- (i) pre-open function if f(G) is an NPO set in Y for every neutrosophic open set G in X.
- (ii) pre-continuous function if $f^{-1}(G)$ is an NPO set in X for every $G \in \sigma$.

2.13 Proposition:⁷

Let $(Y, \tau \mid_Y)$ be a neutrosophic subspace of the NTS (X, τ) . Then

- (i) $G \mid_Y$ is a $\tau \mid_Y$ -NPO set in Y for every τ -NPO set G in X.
- (ii) $G \mid_Y$ is a $\tau \mid_Y$ -NPC set in Y for every τ -NPC set G in X.

3 Neutrosophic pre-compactness

3.1 Definition:

Let (X, τ) be an NTS and $A \in \mathcal{N}(X)$. A collection $C = \{G_{\lambda} : \lambda \in \Delta\}$ of NPO sets of X is called a neutrosophic pre-open cover (NPOC, in short) of A iff $A \subseteq \bigcup_{\lambda \in \Delta} G_{\lambda}$. In particular, C is said to be an NPOC of X iff $\tilde{X} = \bigcup_{\lambda \in \Delta} G_{\lambda}$.

Let C be an NPOC of the NS A and $C' \subseteq C$. Then C' is called a neutrosophic pre-open subcover (NPOSC, in short) of C if C' is also an NPOC of A.

An NPOC C of an NS A is said to be countable (resp. finite) if C consists of a countable (resp. finite) number of NPO sets.

3.2 Definition:

An NS A in an NTS (X, τ) is said to be a neutrosophic pre-compact set iff every NPOC of A has a finite NPOSC. In particular, the space X is said to be a neutrosophic pre-compact space iff every NPOC of X has a finite NPOSC.

An NTS (X, τ) is said to be a neutrosophic countably pre-compact space iff every countable NPOC of X has a finite NPOSC.

An NTS (X, τ) is said to be a neutrosophic pre-Lindelöf space iff every NPOC of X has a countable NPOSC.

3.3 Proposition:

Every neutrosophic pre-compact space is neutrosophic countably pre-compact.

Proof: Obvious.

3.4 Proposition:

In an NTS, every neutrosophic pre-compact set is neutrosophic compact.

Proof: Let A be a neutrosophic pre-compact set of an NTS (X, τ) . Let $C = \{G_i : i \in \Delta\}$ be an NOC of A. Since every neutrosophic open set is an NPO set[by 2.10], so G_i is an NPO set for each $i \in \Delta$. Therefore C is an NPOC of A. Since A is pre-compact, so there exists a finite subcollection $\{G_i^1, G_i^2, ..., G_i^m\}$, say, of C such that $A \subseteq G_i^1 \cup G_i^2 \cup ... \cup G_i^m$. Thus the NOC C of A has a finite NOSC $\{G_i^1, G_i^2, ..., G_i^m\}$. Hence A is a neutrosophic compact set.

3.5 Example :

Converse of 3.4 is not true. We establish it by the following example.

Let $X = \{a, b\}, A = \{\langle a, 1, 0, 0 \rangle, \langle b, 0, 1, 1 \rangle\}, \tau = \{\tilde{X}, \tilde{\emptyset}, A\}$ and for each $n \in \mathbb{N} = \{1, 2, 3, \cdots\}$, we define $H_n = \{\langle a, \frac{n}{n+1}, \frac{1}{n+2}, \frac{1}{n+3} \rangle, \langle b, 0, 1, 1 \rangle\}$. Obviously (X, τ) is an NTS and H_n is an NPO set in X. Clearly A is a neutrosophic compact set. Now $\cup_{n \in \mathbb{N}} H_n = A$. So, $\{H_n : n \in \mathbb{N}\}$ is an NPOC of A. It is clear that the NPOC $\{H_n : n \in \mathbb{N}\}$ of A has no finite NPOSC. Therefore A is not a neutrosophic pre-compact set in X.

3.6 Proposition:

Every neutrosophic pre-compact space is a neutrosophic compact space.

Proof: Obvious from 3.4.

3.7 Remark:

Converse of 3.6 is not true. We establish it by the following example.

Let us consider the NTS (N, τ) , where $\tau = \{\tilde{\emptyset}, \tilde{N}\}, N = \{1, 2, 3, \cdots\}$. Clearly (N, τ) is a neutrosophic compact space. We show that (N, τ) is not a neutrosophic pre-compact space.

For $n \in \mathbb{N}$, we define $G_n = \{ \langle x, \mathcal{T}_{G_n}(x), \mathcal{I}_{G_n}(x), \mathcal{F}_{G_n}(x) : x \in X \}$, where $\mathcal{T}_{G_n}(x) = 1, \mathcal{I}_{G_n}(x) = 0, \mathcal{F}_{G_n}(x) = 0$ if x = n and $\mathcal{T}_{G_n}(x) = 0, \mathcal{I}_{G_n}(x) = 1, \mathcal{F}_{G_n}(x) = 1$ if $x \neq n$. Clearly, for each $n \in \mathbb{N}, G_n$ is an NPO set in (\mathbb{N}, τ) . Obviously the collection $\mathcal{C} = \{G_n : n \in \mathbb{N}\}$ is an NPOC of N but it has no finite NPOSC. Therefore (\mathbb{N}, τ) is not a neutrosophic pre-compact space.

Thus (N, τ) is a neutrosophic compact space but not a neutrosophic pre-compact space.

3.8 Proposition:

In an NTS, union of two neutrosophic pre-compact sets is neutrosophic pre-compact.

Proof: Let A and B be two neutrosophic pre-compact sets of an NTS (X, τ) . Let $C = \{G_i : i \in \Delta\}$ be an NPOC of $A \cup B$. Then $A \cup B \subseteq \bigcup_{i \in \Delta} G_i$. Since $A \subseteq A \cup B$, so C is an NPOC of A. Since A is neutrosophic pre-compact, so there exists a finite subcollection $\{G_i^1, G_i^2, ..., G_i^m\}$ of C such that $A \subseteq G_i^1 \cup G_i^2 \cup ... \cup G_i^m$. Similarly, since B is neutrosophic pre-compact, so there exists a finite subcollection $\{G_i^1, G_i^2, ..., G_i^m\}$ of C such that $A \subseteq G_i^1 \cup G_i^2 \cup ... \cup G_i^m$. Similarly, since B is neutrosophic pre-compact, so there exists a finite subcollection $\{H_i^1, H_i^2, ..., H_i^n\}$ of C such that $B \subseteq H_i^1 \cup H_i^2 \cup ... \cup H_i^n$. Therefore $A \cup B \subseteq G_i^1 \cup G_i^2 \cup ... \cup G_i^m \cup H_i^1 \cup H_i^2 \cup ... \cup H_i^n$. Thus there exists a finite subcollection $\{G_i^1, G_i^2, ..., G_i^m, H_i^1, H_i^2, ..., H_i^n\}$ of C such that $A \cup B \subseteq G_i^1 \cup G_i^2 \cup ... \cup G_i^m \cup H_i^1 \cup H_i^2 \cup ... \cup H_i^n$. Therefore $A \cup B$ is neutrosophic pre-compact. Hence proved.

3.9 Proposition:

In an NTS, finite union of neutrosophic pre-compact sets is neutrosophic pre-compact.

Proof: Immediate from 3.8.

3.10 Proposition:

In an NTS, union of a neutrosophic pre-compact set and a neutrosophic compact set is a neutrosophic compact set.

Proof: Obvious.

3.11 Definition:

Let $(Y, \tau \mid_Y)$ be a neutrosophic subspace of the NTS (X, τ) . Then the set of all NPO sets $G \mid_Y$ in Y for which G is an NPO set in X will be denoted by NPO(Y), i.e., $NPO(Y) = \{G \mid_Y \subseteq Y : G \mid_Y$ is an NPO set in Y and $G \subseteq X$ is an NPO set in X}.

3.12 Proposition:

Let $(Y, \tau \mid_Y)$ be a neutrosophic subspace of the NTS (X, τ) and $A \subseteq Y$. Then A is neutrosophic pre-compact in X iff every cover of A by the NPO sets in NPO(Y) has a finite subcover.

Proof: Necessary part: Let $C = \{G_i \mid Y: i \in \Delta\}$ be a cover of A, where $G_i \mid Y \in NPO(Y)$ for each $i \in \Delta$. Then $A \subseteq \bigcup_{i \in \Delta} (G_i \mid Y) \Rightarrow A \subseteq (\bigcup_{i \in \Delta} G_i) \mid_Y \Rightarrow A \subseteq \bigcup_{i \in \Delta} G_i$. Clearly G_i is an NPO set in X [by 3.11] for each $i \in \Delta$ and so, $C^* = \{G_i : i \in \Delta\}$ is an NPOC of A in X. Since A is pre-compact in X, so there exists a finite subcollection $\{G_{i_k} : k = 1, 2, 3, ..., n\}$ of C^* such that $A \subseteq \bigcup_{k=1}^n G_{i_k} \Rightarrow A \subseteq (\bigcup_{k=1}^n G_{i_k}) \mid_Y \Rightarrow A \subseteq \bigcup_{k=1}^n (G_{i_k} \mid_Y)$. Thus the cover C of A has a finite subcover $\{G_{i_k} : k = 1, 2, 3, ..., n\}$.

Sufficient part: Let $\mathcal{B} = \{G_i : i \in \Delta\}$ be an NPOC of A in X, where G_i is an NPO set in X for each $i \in \Delta$. Then $A \subseteq \bigcup_{i \in \Delta} G_i \Rightarrow A \subseteq (\bigcup_{i \in \Delta} G_i) |_Y \Rightarrow A \subseteq \bigcup_{i \in \Delta} (G_i |_Y)$. Since $G_i |_Y \in NPO(Y)$ for each $i \in \Delta$ [by 2.13], so $\mathcal{B}^* = \{G_i |_Y: i \in \Delta\}$ is a cover of A by the NPO sets in NPO(Y). Therefore, by hypothesis, there exists a finite subcollection $\{G_{i_k} |_Y: k = 1, 2, 3, ..., n\}$ of \mathcal{B}^* such that $A \subseteq \bigcup_{k=1}^n (G_{i_k} |_Y) \Rightarrow A \subseteq (\bigcup_{k=1}^n G_{i_k}) |_Y \Rightarrow A \subseteq \bigcup_{k=1}^n G_{i_k}$. Thus the NPOC \mathcal{B} of A has a finite NPOSC $\{G_{i_k}: k = 1, 2, 3, ..., n\}$. Therefore, A is neutrosophic pre-compact in X.

3.13 Proposition:

Let $(Y, \tau \mid_Y)$ be a neutrosophic subspace of the NTS (X, τ) and $A \subseteq Y$. Then A is neutrosophic pre-Lindelöf (resp. neutrosophic countably pre-compact) in X iff every cover (resp. countable cover) of A by the NPO sets in NPO(Y) has a countable (resp. finite) subcover.

Proof: Obvious from 3.12.

3.14 Proposition:

Let $(Y, \tau \mid_Y)$ be a neutrosophic subspace of the NTS (X, τ) and $A \subseteq Y$. If A is neutrosophic pre-compact in X then A is neutrosophic compact in Y.

Proof: Let $C = \{G_i \mid Y: i \in \Delta\}$ be an NOC of A in Y, where $G_i \mid Y \in \tau \mid Y$ for each $i \in \Delta$. Then $A \subseteq \bigcup_{i \in \Delta} (G_i \mid Y) \Rightarrow A \subseteq \bigcup_{i \in \Delta} G_i$. Obviously $G_i \in \tau$ and so, G_i is an NPO set in X for each $i \in \Delta$. Therefore, $C^* = \{G_i : i \in \Delta\}$ is an NPOC of A in X. Since A is pre-compact in X, so there exists a finite subcollection $\{G_{i_k} : k = 1, 2, 3, ..., n\}$ of C^* such that $A \subseteq \bigcup_{k=1}^n G_{i_k} \Rightarrow A \subseteq (\bigcup_{k=1}^n G_{i_k}) \mid_Y \Rightarrow A \subseteq \bigcup_{k=1}^n (G_{i_k} \mid_Y)$. Thus the NOC C of A has a finite NOSC $\{G_{i_k} : k = 1, 2, 3, ..., n\}$. Therefore A is neutrosophic compact in Y.

3.15 Proposition:

Let $(Y, \tau \mid_Y)$ be a neutrosophic subspace of the NTS (X, τ) and $A \subseteq Y$. If A is pre-compact in Y then A is pre-compact in X.

Proof: Obvious.

3.16 Proposition:

If G is an NPC subset of a neutrosophic pre-compact space (X, τ) such that $G \cap G^c = \tilde{\emptyset}$ then G is neutrosophic pre-compact.

Proof: Let $C = \{H_i : i \in \Delta\}$ be an NPOC of G. Then $G \subseteq \bigcup_{i \in \Delta} H_i$. Since G^c is an NPO set and since $G \cap G^c = \tilde{\emptyset}$, i.e., $G \cup G^c = \tilde{X}$, so $\mathcal{D} = \{H_i : i \in \Delta\} \cup \{G^c\}$ is an NPOC of X. As X is neutrosophic pre-compact, so there exists a finite subcollection $\mathcal{D}' = \{H_{i_1}, H_{i_2}, ..., H_{i_n}\} \cup \{G^c\}$ of \mathcal{D} such that $X \subseteq H_{i_1} \cup H_{i_2} \cup ... \cup H_{i_n} \cup G^c$. Therefore $G \subseteq H_{i_1} \cup H_{i_2} \cup ... \cup H_{i_n} \cup G^c$. But $G \cap G^c = \tilde{\emptyset}$, so $G \subseteq H_{i_1} \cup H_{i_2} \cup ... \cup H_{i_n}$. Thus the NPOC C of G has a finite NPOSC $\{H_{i_1}, H_{i_2}, ..., H_{i_n}\}$. Hence G is neutrosophic pre-compact set.

3.17 Proposition:

If G is an NPC subset of a neutrosophic pre-compact space (X, τ) such that $G \cap G^c = \tilde{\emptyset}$ then G is neutrosophic compact.

Proof: Immediate from 3.16.

3.18 Proposition:

If G is a neutrosophic closed subset of a neutrosophic pre-compact space (X, τ) such that $G \cap G^c = \tilde{\emptyset}$ then G is neutrosophic pre-compact.

Proof: Immediate from 3.16.

3.19 Proposition:

If G is a neutrosophic closed subset of a neutrosophic pre-compact space (X, τ) such that $G \cap G^c = \tilde{\emptyset}$ then G is neutrosophic compact.

Proof: Immediate from 3.18.

3.20 Proposition:

Let (X, τ) be an NTS. An NS $A = \{\langle x, \mathcal{T}_A(x), \mathcal{I}_A(x), \mathcal{F}_A(x) \rangle : x \in X\}$ in X is neutrosophic pre-compact iff for every collection $C = \{G_\lambda : \lambda \in \Delta\}$ of NPO sets of X satisfying $\mathcal{T}_A(x) \leq \bigvee_{\lambda \in \Delta} \mathcal{T}_{G_\lambda}(x), 1 - \mathcal{I}_A(x) \leq \bigvee_{\lambda \in \Delta} (1 - \mathcal{I}_{G_\lambda}(x))$ and $1 - \mathcal{F}_A(x) \leq \bigvee_{\lambda \in \Delta} (1 - \mathcal{F}_{G_\lambda}(x))$, there exists a finite subcollection $\{G_{\lambda_k} : k = 1, 2, 3, ..., n\}$ such that $\mathcal{T}_A(x) \leq \bigvee_{k=1}^n \mathcal{T}_{G_{\lambda_k}}(x), 1 - \mathcal{I}_A(x) \leq \bigvee_{k=1}^n (1 - \mathcal{I}_{G_{\lambda_k}}(x))$ and $1 - \mathcal{F}_A(x) \leq \bigvee_{k=1}^n (1 - \mathcal{F}_{G_{\lambda_k}}(x))$. **Proof:** Necessary Part : Let $C = \{G_{\lambda} : \lambda \in \Delta\}$ be any collection of NPO sets of X satisfying $\mathcal{T}_{A}(x) \leq \bigvee_{\lambda \in \Delta} \mathcal{T}_{G_{\lambda}}(x), 1 - \mathcal{I}_{A}(x) \leq \bigvee_{\lambda \in \Delta} (1 - \mathcal{I}_{G_{\lambda}}(x)) \text{ and } 1 - \mathcal{F}_{A}(x) \leq \bigvee_{\lambda \in \Delta} (1 - \mathcal{F}_{G_{\lambda}}(x)).$ Now $1 - \mathcal{I}_{A}(x) \leq \bigvee_{\lambda \in \Delta} (1 - \mathcal{I}_{G_{\lambda}}(x)) \Rightarrow 1 - \mathcal{I}_{A}(x) \leq 1 - \mathcal{I}_{G_{\beta}}(x) \text{ for some } \beta \in \Delta \Rightarrow \mathcal{I}_{A}(x) \geq \mathcal{I}_{G_{\beta}}(x) \Rightarrow \mathcal{I}_{A}(x) \geq \bigwedge_{\lambda \in \Delta} \mathcal{I}_{G_{\lambda}}(x).$ Similarly $1 - \mathcal{F}_{A}(x) \leq \bigvee_{\lambda \in \Delta} (1 - \mathcal{F}_{G_{\lambda}}(x)) \Rightarrow \mathcal{F}_{A}(x) \geq \bigwedge_{\lambda \in \Delta} \mathcal{F}_{G_{\lambda}}(x).$ Therefore $A \subseteq \bigcup_{\lambda \in \Delta} \mathcal{G}_{\lambda}$, i.e., C is an NPOC of A. Since A is neutrosophic pre-compact, so C has a finite NPOSC $\{G_{\lambda_{k}} : k = 1, 2, 3, \cdots, n\}$, say. Therefore $A \subseteq \bigcup_{k=1}^{n} \mathcal{G}_{\lambda_{k}}.$ Then $\mathcal{T}_{A}(x) \leq \bigvee_{k=1}^{n} \mathcal{T}_{G_{\lambda_{k}}}(x), \mathcal{I}_{A}(x) \geq \bigwedge_{k=1}^{n} \mathcal{I}_{G_{\lambda_{k}}}(x)$ and $\mathcal{F}_{A}(x) \geq \bigwedge_{k=1}^{n} \mathcal{F}_{G_{\lambda_{k}}}(x).$ Now $\mathcal{I}_{A}(x) \geq \bigwedge_{k=1}^{n} \mathcal{I}_{G_{\lambda_{k}}}(x) \Rightarrow \mathcal{I}_{A}(x) \geq \mathcal{I}_{G_{\lambda_{m}}}(x)$ for some $m, 1 \leq m \leq n$ $\Rightarrow 1 - \mathcal{I}_{A}(x) \leq 1 - \mathcal{I}_{G_{\lambda_{m}}}(x)$ for some $m, 1 \leq m \leq n \Rightarrow 1 - \mathcal{I}_{A}(x) \leq 1 - \mathcal{I}_{G_{\lambda_{m}}}(x)$ for some $m, 1 \leq m \leq n \Rightarrow 1 - \mathcal{I}_{A}(x) \leq \bigwedge_{k=1}^{n} \mathcal{F}_{G_{\lambda_{k}}}(x) \Rightarrow 1 - \mathcal{F}_{A}(x) \leq \bigvee_{k=1}^{n} (1 - \mathcal{F}_{G_{\lambda_{k}}}(x)).$ Similarly $\mathcal{F}_{A}(x) \geq \bigwedge_{k=1}^{n} \mathcal{F}_{G_{\lambda_{k}}}(x) \Rightarrow 1 - \mathcal{F}_{A}(x) \leq \bigvee_{k=1}^{n} (1 - \mathcal{F}_{G_{\lambda_{k}}}(x)).$ Thus $\mathcal{T}_{A}(x) \leq \bigvee_{k=1}^{n} \mathcal{T}_{G_{\lambda_{k}}}(x), 1 - \mathcal{I}_{A}(x) \leq \bigvee_{k=1}^{n} (1 - \mathcal{I}_{G_{\lambda_{k}}}(x)).$

Sufficient Part : Let $C = \{G_{\lambda} : \lambda \in \Delta\}$ be an NPOC of A. Then $A \subseteq \bigcup_{\lambda \in \Delta} G_{\lambda}$, i.e., $\mathcal{T}_{A}(x) \leq \bigvee_{\lambda \in \Delta} \mathcal{T}_{G_{\lambda}}(x)$, $\mathcal{I}_{A}(x) \geq \bigwedge_{\lambda \in \Delta} \mathcal{I}_{G_{\lambda}}(x)$ and $\mathcal{F}_{A}(x) \geq \bigwedge_{\lambda \in \Delta} \mathcal{F}_{G_{\lambda}}(x)$. Now $\mathcal{I}_{A}(x) \geq \bigwedge_{\lambda \in \Delta} \mathcal{I}_{G_{\lambda}}(x) \Rightarrow \mathcal{I}_{A}(x) \geq \mathcal{I}_{G_{\alpha}}(x)$ for some $\alpha \in \Delta \Rightarrow 1 - \mathcal{I}_{A}(x) \leq 1 - \mathcal{I}_{G_{\alpha}}(x) \Rightarrow 1 - \mathcal{I}_{A}(x) \leq \bigvee_{\lambda \in \Delta} (1 - \mathcal{I}_{G_{\lambda}}(x))$. Similarly $\mathcal{F}_{A}(x) \geq \bigwedge_{\lambda \in \Delta} \mathcal{F}_{G_{\lambda}}(x) \Rightarrow 1 - \mathcal{F}_{A}(x) \leq \bigvee_{\lambda \in \Delta} (1 - \mathcal{I}_{G_{\lambda}}(x))$. Similarly $\mathcal{F}_{A}(x) \geq \bigvee_{\lambda \in \Delta} \mathcal{F}_{G_{\lambda}}(x) \Rightarrow 1 - \mathcal{F}_{A}(x) \leq \bigvee_{\lambda \in \Delta} (1 - \mathcal{F}_{G_{\lambda}}(x))$. Thus the collection C satisfies the condition $\mathcal{T}_{A}(x) \leq \bigvee_{\lambda \in \Delta} \mathcal{T}_{G_{\lambda}}(x), 1 - \mathcal{I}_{A}(x) \leq \bigvee_{\lambda \in \Delta} (1 - \mathcal{I}_{G_{\lambda}}(x))$ and $1 - \mathcal{F}_{A}(x) \leq \bigvee_{\lambda \in \Delta} (1 - \mathcal{F}_{G_{\lambda}}(x))$. By the hypothesis, there exists a finite subcollection $\{G_{\lambda_{k}} : k = 1, 2, 3, ..., n\}$ such that $\mathcal{T}_{A}(x) \leq \bigvee_{k=1}^{n} \mathcal{T}_{G_{\lambda_{k}}}(x), 1 - \mathcal{I}_{A}(x) \leq \bigvee_{k=1}^{n} (1 - \mathcal{I}_{G_{\lambda_{k}}}(x))$ and $1 - \mathcal{F}_{A}(x) \leq \bigvee_{k=1}^{n} (1 - \mathcal{I}_{G_{\lambda_{k}}}(x)) \Rightarrow 1 - \mathcal{I}_{A}(x) \leq 1 - \mathcal{I}_{G_{\lambda_{m}}}(x)$ for some $m, 1 \leq m \leq n \Rightarrow \mathcal{I}_{A}(x) \geq \mathcal{I}_{G_{\lambda_{m}}}(x) \Rightarrow \mathcal{I}_{A}(x) \geq \bigwedge_{k=1}^{n} \mathcal{I}_{G_{\lambda_{k}}}(x)$. Similarly we shall have $\mathcal{F}_{A}(x) \geq \bigwedge_{k=1}^{n} \mathcal{F}_{G_{\lambda_{k}}}(x)$. Therefore $A \subseteq \bigcup_{k=1}^{n} G_{\lambda_{k}}$, i.e., the NPOC C of A has a finite NPOSC $\{G_{\lambda_{k}} : k = 1, 2, 3, \dots, n\}$. Therefore, A is neutrosophic pre-compact set.

Hence proved.

3.21 Proposition:

Let (X, τ) be an NTS. Then X is neutrosophic compact iff for every collection $C = \{G_{\lambda} : \lambda \in \Delta\}$ of NPO sets of X satisfying $\bigvee_{\lambda \in \Delta} \mathcal{T}_{G_{\lambda}}(x) = 1$, $\bigvee_{\lambda \in \Delta} (1 - \mathcal{I}_{G_{\lambda}}(x)) = 1$ and $\bigvee_{\lambda \in \Delta} (1 - \mathcal{F}_{G_{\lambda}}(x)) = 1$, there exists a finite subcollection $\{G_{\lambda_{k}} : k = 1, 2, 3, ..., n\}$ such that $\bigvee_{k=1}^{n} \mathcal{T}_{G_{\lambda_{k}}}(x) = 1$, $\bigvee_{k=1}^{n} (1 - \mathcal{I}_{G_{\lambda_{k}}}(x)) = 1$ and $\bigvee_{k=1}^{n} (1 - \mathcal{F}_{G_{\lambda_{k}}}(x)) = 1$.

Proof: Immediate from 3.20.

3.22 Definition:

Let (X, τ) be an NTS. A collection $\{G_{\lambda} : \lambda \in \Delta\}$ of neutrosophic sets of X is said to have the finite intersection property (FIP, in short) iff every finite subcollection $\{G_{\lambda_k} : k = 1, 2, \dots, n\}$ of $\{G_{\lambda} : \lambda \in \Delta\}$ satisfies the condition $\bigcap_{k=1}^{n} G_{\lambda_k} \neq \tilde{\emptyset}$, where Δ is an index set.

3.23 Proposition:

An NTS (X, τ) is neutrosophic pre-compact iff every collection of NPC sets with the FIP has a non-empty intersection.

Proof: Necessary part: Let $\mathcal{A} = \{N_i : i \in \Delta\}$ be an arbitrary collection of NPC sets with the FIP. We show that $\bigcap_{i \in \Delta} N_i \neq \tilde{\emptyset}$. On the contrary, suppose that $\bigcap_{i \in \Delta} N_i = \tilde{\emptyset}$. Then $(\bigcap_{i \in \Delta} N_i)^c = (\tilde{\emptyset})^c \Rightarrow \bigcup_{i \in \Delta} N_i^c = \tilde{X}$. Therefore $\mathcal{B} = \{N_i^c : N_i \in \mathcal{A}\}$ is an NPOC of X and so, \mathcal{B} has a finite NPOSC $\{N_{i_1}^c, N_{i_2}^c, ..., N_{i_k}^c\}$, say. Then $\bigcup_{i=1}^k N_{i_i}^c = \tilde{X} \Rightarrow \bigcap_{i=1}^k N_{i_j} = \tilde{\emptyset}$, which is a contradiction as \mathcal{A} has FIP. Therefore $\bigcap_{i \in \Delta} N_i \neq \tilde{\emptyset}$.

Sufficient part: On the contrary, suppose that X is not neutrosophic pre-compact. Then there must exist an NPOC of X which will have no finite NPOSC. Let $C = \{G_i : i \in \Delta\}$ be an NPOC of X which has no

finite subcover. Then for every finite subcollection $\{G_{i_1}, G_{i_2}, ..., G_{i_k}\}$ of \mathcal{C} , we have $\bigcup_{j=1}^k G_{i_j} \neq \tilde{X} \Rightarrow \bigcap_{j=1}^k G_{i_j}^c \neq \tilde{\emptyset}$. Therefore $\{G_i^c : G_i \in \mathcal{C}\}$ is a collection of NPC sets having the FIP. By the assumption, $\bigcap_{i \in \Delta} G_i^c \neq \tilde{\emptyset} \Rightarrow \bigcup_{i \in \Delta} G_i \neq \tilde{X}$. This implies that \mathcal{C} is not an NPOC of X, which is a contradiction. Therefore, NPOC \mathcal{C} of X must have a finite NPOSC. Therefore X is neutrosophic pre-compact.

Hence proved.

3.24 Proposition:

Let f be a neutrosophic pre-continuous function from an NTS (X, τ) to the NTS (Y, σ) . If A is neutrosophic pre-compact set in X then f(A) is neutrosophic compact set in Y.

Proof: Let $\mathcal{B} = \{G_{\lambda} : \lambda \in \Delta\}$ be an NOC of f(A). Then $f(A) \subseteq \bigcup_{\lambda \in \Delta} G_{\lambda} \Rightarrow f^{-1}(f(A)) \subseteq f^{-1}(\bigcup_{\lambda \in \Delta} G_{\lambda})$ $\Rightarrow f^{-1}(f(A)) \subseteq \bigcup_{\lambda \in \Delta} f^{-1}(G_{\lambda}) \Rightarrow A \subseteq \bigcup_{\lambda \in \Delta} f^{-1}(G_{\lambda})$. Since G_{λ} is σ -open NS in Y, so $f^{-1}(G_{\lambda})$ is τ -NPO set in X as f is pre-continuous. Therefore $C = \{f^{-1}(G_{\lambda}) : \lambda \in \Delta\}$ is an NPOC of A. Since A is neutrosophic pre-compact, so C has a finite NPOSC $\{f^{-1}(G_{\lambda_1}), f^{-1}(G_{\lambda_2}), \cdots, f^{-1}(G_{\lambda_n})\}$, say. Therefore $A \subseteq \bigcup_{i=1}^n f^{-1}(G_{\lambda_i}) \Rightarrow f(A) \subseteq f(\bigcup_{i=1}^n f^{-1}(G_{\lambda_i})) \Rightarrow f(A) \subseteq \bigcup_{i=1}^n f(f^{-1}(G_{\lambda_i})) \Rightarrow f(A) \subseteq \bigcup_{i=1}^n G_{\lambda_i}$. Thus the NOC \mathcal{B} of f(A) has a finite NOSC. Therefore f(A) is neutrosophic compact. Hence proved.

3.25 Proposition:

Let f be a neutrosophic continuous function from an NTS (X, τ) to the NTS (Y, σ) . If A is neutrosophic pre-compact in X then f(A) is neutrosophic compact in Y.

Proof: Obvious from 3.24.

3.26 Proposition:

Let f be a neutrosophic pre-continuous function from an NTS (X, τ) onto the NTS (Y, σ) . If (X, τ) is neutrosophic pre-compact then (Y, σ) is neutrosophic compact.

Proof: Since f is onto, so $f(\tilde{X}) = \tilde{Y}$. Let $\mathcal{B} = \{G_{\lambda} : \lambda \in \Delta\}$ be an NOC of Y. Then $\bigcup_{\lambda \in \Delta} G_{\lambda} = \tilde{Y} \Rightarrow f^{-1}(\bigcup_{\lambda \in \Delta} G_{\lambda}) = f^{-1}(\tilde{Y}) \Rightarrow \bigcup_{\lambda \in \Delta} f^{-1}(G_{\lambda}) = \tilde{X}$. Since G_{λ} is σ -open NS in Y, so $f^{-1}(G_{\lambda})$ is τ -NPO set in X as f is pre-continuous. Therefore $C = \{f^{-1}(G_{\lambda}) : \lambda \in \Delta\}$ is an NPOC of X. Since X is pre-compact, so C has a finite NPOSC $\{f^{-1}(G_{\lambda_1}), f^{-1}(G_{\lambda_2}), \cdots, f^{-1}(G_{\lambda_n}\})$, say. Therefore $\bigcup_{i=1}^n f^{-1}(G_{\lambda_i}) = \tilde{X} \Rightarrow f(\bigcup_{i=1}^n f^{-1}(G_{\lambda_i})) = f(\tilde{X}) \Rightarrow \bigcup_{i=1}^n f(f^{-1}(G_{\lambda_i})) = \tilde{Y} \Rightarrow \bigcup_{i=1}^n G_{\lambda_i} = \tilde{Y}$. Thus the NOC \mathcal{B} of Y has a finite NOSC. Therefore Y is neutrosophic compact. Hence proved.

3.27 Proposition:

Let f be a neutrosophic continuous function from an NTS (X, τ) onto the NTS (Y, σ) . If (X, τ) is neutrosophic pre-compact then (Y, σ) is neutrosophic compact.

Proof: Obvious from 3.26.

3.28 Proposition:

Let f be a neutrosophic pre-continuous function from an NTS (X, τ) onto the NTS (Y, σ) . If X is neutrosophic countably pre-compact then Y is neutrosophic countably compact.

Proof: Since f is onto, so $f(\tilde{X}) = \tilde{Y}$. Let $\mathcal{A} = \{G_{\lambda} : \lambda \in \Delta\}$ be a countable NOC of Y. Then $\bigcup_{\lambda \in \Delta} G_{\lambda} = \tilde{Y} \Rightarrow f^{-1}(\bigcup_{\lambda \in \Delta} G_{\lambda}) = f^{-1}(\tilde{Y}) \Rightarrow \bigcup_{\lambda \in \Delta} f^{-1}(G_{\lambda}) = \tilde{X}$. Since G_{λ} is σ -open NS in Y, so $f^{-1}(G_{\lambda})$ is τ -NPO set in X as f is pre-continuous. Therefore $C = \{f^{-1}(G_{\lambda}) : \lambda \in \Delta\}$ is an NPOC of X. Obviously C is countable as A is countable. Again since X is neutrosophic countably pre-compact, so C has a finite NPOSC $\{f^{-1}(G_{\lambda_1}), f^{-1}(G_{\lambda_2}), \cdots, f^{-1}(G_{\lambda_n}\})$, say. Therefore $\bigcup_{i=1}^n f^{-1}(G_{\lambda_i}) = \tilde{X} \Rightarrow f(\bigcup_{i=1}^n f^{-1}(G_{\lambda_i})) = f(\tilde{X}) \Rightarrow \bigcup_{i=1}^n f(f^{-1}(G_{\lambda_i})) = \tilde{Y} \Rightarrow \bigcup_{i=1}^n G_{\lambda_i} = \tilde{Y}$. Thus the countable NOC \mathcal{A} of Y has a finite NPOSC. Hence Y is neutrosophic countably compact.

3.29 Proposition:

Let f be a neutrosophic continuous function from an NTS (X, τ) onto the NTS (Y, σ) . If X is neutrosophic countably pre-compact then Y is neutrosophic countably compact.

Proof: Immediate from 3.28.

3.30 Proposition:

Let f be a neutrosophic pre-continuous function from an NTS (X, τ) onto the NTS (Y, σ) . If X is neutrosophic pre-Lindelöf then Y is neutrosophic Lindelöf.

Proof: Since f is onto, so $f(\tilde{X}) = \tilde{Y}$. Let $\mathcal{A} = \{A_i : i \in \Delta\}$ be an NOC of Y. Then $\tilde{Y} = \bigcup_{i \in \Delta} A_i \Rightarrow f^{-1}(\tilde{Y}) = f^{-1}(\bigcup_{i \in \Delta} A_i) \Rightarrow \tilde{X} = \bigcup_{i \in \Delta} f^{-1}(A_i) \Rightarrow \{f^{-1}(A_i) : i \in \Delta\}$ is an NPOC of X. Since X is neutrosophic pre-Lindelöf, so $\{f^{-1}(A_i) : i \in \Delta\}$ has a countable NPOSC $\mathcal{B} = \{f^{-1}(A_{i_k}) : k = 1, 2, 3, \ldots\}$, say. Therefore $\tilde{X} = f^{-1}(A_{i_1}) \cup f^{-1}(A_{i_2}) \cup f^{-1}(A_{i_3}) \cup \ldots$ This gives $f(\tilde{X}) = f[f^{-1}(A_{i_1}) \cup f^{-1}(A_{i_2}) \cup f^{-1}(A_{i_2}) \cup f(f^{-1}(A_{i_3})) \cup \ldots \Rightarrow \tilde{Y} = A_{i_1} \cup A_{i_2} \cup A_{i_3} \cup \ldots \Rightarrow \{A_{i_k} : k = 1, 2, 3, \cdots\}$ an NOC of Y. Since \mathcal{B} is countable, so $\{A_{i_k} : k = 1, 2, 3, \cdots\}$ is also countable. Therefore the NOC \mathcal{A} of Y has a countable NOSC $\{A_{i_k} : k = 1, 2, 3, \cdots\}$ and so, Y is neutrosophic Lindelöf. Hence proved.

3.31 Proposition:

Let f be a neutrosophic continuous function from an NTS (X, τ) onto the NTS (Y, σ) . If X is neutrosophic pre-Lindelöf then Y is neutrosophic Lindelöf.

Proof: Immediate from 3.30.

3.32 Proposition:

Let f be a neutrosophic pre-open function from an NTS (X, τ) to the NTS (Y, σ) . If $A \subseteq Y$ is neutrosophic pre-compact in Y then $f^{-1}(A)$ is neutrosophic compact in X.

Proof: Let $\mathcal{B} = \{G_{\lambda} : \lambda \in \Delta\}$ be an NOC of $f^{-1}(A)$. Then $f^{-1}(A) \subseteq \bigcup_{\lambda \in \Delta} G_{\lambda} \Rightarrow A \subseteq f(\bigcup_{\lambda \in \Delta} G_{\lambda}) \Rightarrow A \subseteq \bigcup_{\lambda \in \Delta} f(G_{\lambda})$. Since G_{λ} is τ -open set, so $f(G_{\lambda})$ is σ -NPO set for each $\lambda \in \Delta$ as f is a pre-open function. Therefore, $\mathcal{C} = \{f(G_{\lambda}) : \lambda \in \Delta\}$ is an NPOC of A. Since A is neutrosophic pre-compact, so \mathcal{C} has a finite NPOSC $\{f(G_{\lambda_1}), f(G_{\lambda_2}), f(G_{\lambda_3}), ..., f(G_{\lambda_n})\}$, say. Therefore $A \subseteq \bigcup_{i=1}^n f(G_{\lambda_i}) \Rightarrow A \subseteq f(\bigcup_{i=1}^n G_{\lambda_i}) \Rightarrow f^{-1}(A) \subseteq \bigcup_{i=1}^n G_{\lambda_i}$. Thus the NOC \mathcal{B} of $f^{-1}(A)$ has a finite NOSC $\{G_{\lambda_1}, G_{\lambda_2}, G_{\lambda_3}, ..., G_{\lambda_n}\}$. Therefore $f^{-1}(A)$ is neutrosophic compact in X. Hence proved.

3.33 Proposition:

Let f be a neutrosophic pre-open function from an NTS (X, τ) onto the NTS (Y, σ) . If (Y, σ) is neutrosophic pre-compact (resp. neutrosophic countably pre-compact, neutrosophic pre-Lindelöf) then (X, τ) is neutrosophic compact (resp. neutrosophic countably compact, neutrosophic Lindelöf).

Proof: Immediate from 3.32 as f is onto.

3.34 Proposition:

Let f be a neutrosophic open function from an NTS (X, τ) onto the NTS (Y, σ) . If (Y, σ) is neutrosophic precompact (resp. neutrosophic countably pre-compact, neutrosophic pre-Lindelöf) then (X, τ) is neutrosophic compact (resp. neutrosophic countably compact, neutrosophic Lindelöf).

Proof: Obvious from 3.33.

3.35 Definition:

Let f be a function from an NTS (X, τ) to the NTS (Y, σ) . Then f is called a neutrosophic pre*-open function if f(G) is an NPO set in Y for every NPO set G in X.

3.36 Proposition:

Let f be a neutrosophic pre-*-open function from an NTS (X, τ) to the NTS (Y, σ) and $A \in \mathcal{N}(Y)$. If A is neutrosophic pre-compact in Y then $f^{-1}(A)$ is neutrosophic pre-compact in X.

Proof: Let $\mathcal{B} = \{G_{\lambda} : \lambda \in \Delta\}$ be an NPOC of $f^{-1}(A)$. Then $f^{-1}(A) \subseteq \bigcup_{\lambda \in \Delta} G_{\lambda} \Rightarrow A \subseteq f(\bigcup_{\lambda \in \Delta} G_{\lambda}) \Rightarrow A \subseteq \bigcup_{\lambda \in \Delta} f(G_{\lambda})$. Since G_{λ} is τ -NPO set, so $f(G_{\lambda})$ is σ -NPO set for each $\lambda \in \Delta$ as f is a pre*-open function. Therefore, $\mathcal{C} = \{f(G_{\lambda}) : G_{\lambda} \in \mathcal{B}\}$ is an NPOC of A. Since A is neutrosophic pre-compact, so \mathcal{C} has a finite NPOSC $\{f(G_{\lambda_1}), f(G_{\lambda_2}), f(G_{\lambda_3}), ..., f(G_{\lambda_n})\}$, say. Therefore $A \subseteq \bigcup_{i=1}^n f(G_{\lambda_i}) \Rightarrow A \subseteq f(\bigcup_{i=1}^n G_{\lambda_i}) \Rightarrow f^{-1}(A) \subseteq \bigcup_{i=1}^n G_{\lambda_i}$. Thus the NPOC \mathcal{B} of $f^{-1}(A)$ has a finite NPOSC $\{G_{\lambda_1}, G_{\lambda_2}, G_{\lambda_3}, ..., G_{\lambda_n}\}$. Therefore $f^{-1}(A)$ is neutrosophic pre-compact in X. Hence proved.

3.37 Proposition:

Let f be a neutrosophic pre-*-open function from an NTS (X, τ) onto the NTS (Y, σ) . If (Y, σ) is neutrosophic pre-compact (resp. neutrosophic countably pre-compact, neutrosophic pre-Lindelöf) then (X, τ) is also neutrosophic pre-compact (resp. neutrosophic countably pre-compact, neutrosophic pre-Lindelöf).

Proof: Immediate from 3.36 as f is onto.

3.38 Definition:

Let f be a neutrosophic function from an NTS (X, τ) to the NTS (Y, σ) . Then f is called a neutrosophic pre-irresolute function if $f^{-1}(G)$ is an NPO set in X for every NPO set G in Y.

3.39 Proposition:

Let f be a neutrosophic pre-irresolute function from an NTS (X, τ) to the NTS (Y, σ) . If A is neutrosophic pre-compact in X then f(A) is also neutrosophic pre-compact in Y.

Proof: Let $\mathcal{B} = \{G_{\lambda} : \lambda \in \Delta\}$ be an NPOC of f(A) in Y. Then $f(A) \subseteq \bigcup_{\lambda \in \Delta} G_{\lambda} \Rightarrow A \subseteq f^{-1}(\bigcup_{\lambda \in \Delta} G_{\lambda}) \Rightarrow A \subseteq \bigcup_{\lambda \in \Delta} f^{-1}(G_{\lambda})$. Since G_{λ} is σ -NPO set in Y, so $f^{-1}(G_{\lambda})$ is a τ -NPO set in X as f is a neutrosophic pre-irresolute function. Therefore $C = \{f^{-1}(G_{\lambda}) : \lambda \in \Delta\}$ is an NPOC of A in X. Since A is neutrosophic pre-compact in X, so C has a finite NPOSC $\{f^{-1}(G_{\lambda_1}), f^{-1}(G_{\lambda_2}), \cdots, f^{-1}(G_{\lambda_n})\}$, say. Therefore $A \subseteq \bigcup_{i=1}^n f^{-1}(G_{\lambda_i}) \Rightarrow f(A) \subseteq f(\bigcup_{i=1}^n f^{-1}(G_{\lambda_i})) \Rightarrow f(A) \subseteq \bigcup_{i=1}^n f(f^{-1}(G_{\lambda_i})) \Rightarrow f(A) \subseteq \bigcup_{i=1}^n G_{\lambda_i}$. Thus the NPOC \mathcal{B} of f(A) has a finite NPOSC $\{G_{\lambda_1}, G_{\lambda_2}, \cdots, G_{\lambda_n}\}$. Therefore f(A) is neutrosophic pre-compact. Hence proved.

3.40 Proposition:

Let f be a neutrosophic pre-irresolute function from an NTS (X, τ) onto the NTS (Y, σ) . If (X, τ) is neutrosophic pre-compact (resp. neutrosophic countably pre-compact, neutrosophic pre-Lindelöf) then (Y, σ) is also neutrosophic pre-compact (resp. neutrosophic countably pre-compact, neutrosophic pre-Lindelöf).

Proof: Obvious from 3.39.

3.41 Definition :

Let (X, τ) be an NTS and NPO(X) be the collection of all NPO sets in X. A subcollection \mathcal{B} of NPO(X) is called a neutrosophic pre-base (Np-base, for short) for X iff for each $A \in NPO(X)$, there exists a subcollection $\{A_i : i \in \Delta\}$ of \mathcal{B} such that $A = \bigcup \{A_i : i \in \Delta\}$, where Δ is an index set.

A subcollection \mathcal{B}_* of NPO(X) is called a neutrosophic pre-subbase (Np-subbase, for short) for X iff the finite intersection of members of \mathcal{B}_* forms a neutrosophic pre-base for X.

3.42 Definition:

An NTS (X, τ) is said to be neutrosophic pre- C_{II} space iff X has a countable neutrosophic pre-base, i.e., an NTS (X, τ) is said to be pre- C_{II} space iff there exists a countable subcollection \mathcal{B} of NPO(X) such that every member of NPO(X) can be expressed as the union of some members of \mathcal{B} .

3.43 Proposition:

Let \mathcal{B} be an Np-base for an NTS (X, τ) . Then X is neutrosophic pre-compact iff every NPOC of X by the members of \mathcal{B} has a finite NPOSC.

Proof: Necessary Part : Obvious.

Sufficient Part : Let $\mathcal{B} = \{B_{\alpha} : \alpha \in \Delta\}$ be the Np-base. Also let $\mathcal{C} = \{G_{\lambda} : \lambda \in \Delta\}$ be an NPOC of X. Then each member G_{λ} of \mathcal{C} is the union of some members of \mathcal{B} and the totality of such members of \mathcal{B} is evidently an NPOC of X. By the hypothesis, this collection of members of \mathcal{B} has a finite NPOSC $\mathcal{D} = \{B_{\alpha_j} : j = 1, 2, 3, \dots, n\}$, say. Clearly for each B_{α_j} in \mathcal{D} , there is a G_{λ_j} in \mathcal{C} such that $B_{\alpha_j} \subseteq G_{\lambda_j}$. Therefore the finite subcollection $\{G_{\lambda_j} : j = 1, 2, 3, \dots, n\}$ of \mathcal{C} is an NPOC of X, i.e., the NPOC \mathcal{C} of X has a finite NPOSC $\{G_{\lambda_j} : j = 1, 2, 3, \dots, n\}$. Therefore X is neutrosophic pre-compact.

3.44 Proposition:

Let (X, τ) be a neutrosophic countably pre-compact space. If X is pre- C_{II} then X neutrosophic pre-compact.

Proof: Let $\mathcal{D} = \{A_i : i \in \Delta\}$ be any NPOC of X. Since X is pre- C_{II} , so there exists a countable Np-base $\mathcal{B} = \{B_n : n = 1, 2, 3, \cdots\}$ for X. Then each $A_i \in \mathcal{D}$ can be expressed as the union of some members of \mathcal{B} . Let $A_i = \bigcup_{k=1}^{i_0} B_{n_k}$, where $B_{n_k} \in \mathcal{B}$ and i_0 may be infinity. Clearly $\mathcal{B}_0 = \{B_{n_k}\}$ is an NPOC of X. Also \mathcal{B}_0 is countable as $\mathcal{B}_0 \subseteq \mathcal{B}$. Therefore, \mathcal{B}_0 is a countable NPOC of X. Since X is countably pre-compact, so \mathcal{B}_0 has a finite NPOSC \mathcal{B}' , say. Since by construction, each member of \mathcal{B}' is contained in one member A_i of \mathcal{D} , so these A_i 's form a finite NPOC of X. Thus the NPOC \mathcal{D} of X has a finite NPOSC. Therefore X is neutrosophic pre-compact. Hence Proved.

3.45 Remark:

In view of 3.3 and 3.44, it is evident that if an NTS (X, τ) is pre- C_{II} then neutrosophic pre-compactness and neutrosophic countably pre-compactness are equivalent.

3.46 Proposition:

If an NTS (X, τ) is pre- C_{II} then it is neutrosophic pre-Lindelöf.

Proof: Let $\mathcal{A} = \{A_i : i \in \Delta\}$ be an NPOC of X. Since X is pre- C_{II} , so there exists a countable Np-base $\mathcal{B} = \{B_n : n = 1, 2, 3, \cdots\}$ for X. Then each $A_i \in \mathcal{A}$ can be expressed as the union of some members of \mathcal{B} . Let $A_i = \bigcup_{k=1}^{i_0} B_{n_k}$, where $B_{n_k} \in \mathcal{B}$ and i_0 may be infinity. Let $\mathcal{B}_0 = \{B_{n_k}\}$. Then \mathcal{B}_0 is an NPOC of X. Also \mathcal{B}_0 is countable as $\mathcal{B}_0 \subseteq \mathcal{B}$. Therefore, \mathcal{B}_0 is a countable NPOC of X. By construction, each member of \mathcal{B}_0 is contained in one A_i of \mathcal{A} . So, these A_i 's form a countable NPOC of X. Thus the NPOC \mathcal{A} of X has a countable NPOSC. Therefore X is neutrosophic pre-Lindelöf.

3.47 Proposition:

Let β be an Np-subbase of an NTS (X, τ) . Then X is neutrosophic pre-compact iff for every collection of NPC sets chosen from β^c having the FIP, there is a non-empty intersection.

Proof: Necessary part : Immediate from 3.23.

Sufficient Part : On the contrary, let us suppose that X is not pre-compact. Then by 3.23, there exists a collection $\mathcal{C} = \{G_i : i \in I\}$ of NPC of X having the FIP such that $\bigcap_{i \in \Delta} G_i = \tilde{\emptyset}$. The collection of all such collections \mathcal{C} can be arranged in an order by using the classical inclusion(\subseteq) and the collection will certainly have an upper bound. Therefore by Zorn's lemma, there will be a maximal collection of all the collections \mathcal{C} . Let $\mathcal{P} = \{P_j : j \in J\}$ be the maximal collection. This collection \mathcal{P} has the following properties : (i) $\tilde{\emptyset} \notin \mathcal{P}$ (ii) $P \in \mathcal{P}, P \subseteq Q \Rightarrow Q \in \mathcal{P}$ (iii) $P, Q \in \mathcal{P} \Rightarrow P \cap Q \in \mathcal{P}$ (iv) $\cap(\mathcal{P} \cap \beta^c) = \tilde{\emptyset}$. Clearly the property (iv) delivers a contradiction to the hypothesis. Therefore X is pre-compact.

Hence proved.

4 Neutrosophic local pre-compactness

4.1 Definition:

An NTS (X, τ) is said to be a neutrosophic locally pre-compact space iff for every NP $x_{\alpha,\beta,\gamma}$ in X, there exists a τ -NPO set G such that $x_{\alpha,\beta,\gamma} \in G$ and G is neutrosophic pre-compact in X. https://doi.org/10.54216/IJNS.210110 118 Received: January 16, 2023 Revised: April 12, 2023 Accepted: May 10, 2023

4.2 Proposition:

Every neutrosophic pre-compact space is a neutrosophic locally pre-compact space.

Proof: Let (X, τ) be a neutrosophic pre-compact space and let $x_{\alpha,\beta,\gamma}$ be an NP in X. Since X is neutrosophic pre-compact and since \tilde{X} is an NPO set such that $x_{\alpha,\beta,\gamma} \in \tilde{X}$, so, (X, τ) is a neutrosophic locally pre-compact space.

4.3 Proposition:

Let f be a neutrosophic pre-*-open and pre-irresolute function from an NTS space (X, τ) to the NTS (Y, σ) . If (Y, σ) neutrosophic locally pre-compact then (X, τ) is also a neutrosophic locally pre-compact space.

Proof: Let $x_{\alpha,\beta,\gamma}$ be any NP in X. Then there exists an NP $y_{p,q,r}$ in Y such that $f(x_{\alpha,\beta,\gamma}) = y_{p,q,r}$. Since $y_{p,q,r} \in Y$ and Y neutrosophic locally pre-compact, so there exists a σ -NPO set G such that $y_{p,q,r} \in G$ and G is neutrosophic pre-compact in Y. Now $y_{p,q,r} \in G \Rightarrow f(x_{\alpha,\beta,\gamma}) \in G \Rightarrow x_{\alpha,\beta,\gamma} \in f^{-1}(G)$. Since f is neutrosophic pre-*-open and G is neutrosophic pre-compact in Y, so by 3.36, $f^{-1}(G)$ is neutrosophic pre-compact in X. Again since f is a neutrosophic pre-irresolute function, so $f^{-1}(G)$ is a τ -NPO set. Thus for any any NP $x_{\alpha,\beta,\gamma}$ in X, there exists a τ -NPO set $f^{-1}(G)$ such that $x_{\alpha,\beta,\gamma} \in f^{-1}(G)$ and $f^{-1}(G)$ is neutrosophic pre-compact in X. Therefore (X, τ) is neutrosophic locally pre-compact space.

4.4 Proposition:

Let f be a neutrosophic pre^{*}-open and pre-irresolute function from an NTS (X, τ) onto the NTS (Y, σ) . If X is neutrosophic locally pre-compact then Y is neutrosophic locally pre-compact.

Proof: Let $y_{p,q,r}$ be any NP in Y. Since f is onto, so there is an NP $x_{\alpha,\beta,\gamma}$ in X such that $f(x_{\alpha,\beta,\gamma}) = y_{p,q,r}$. Since $x_{\alpha,\beta,\gamma} \in X$ and X neutrosophic locally pre-compact, so there exists a τ -NPO set G such that $x_{\alpha,\beta,\gamma} \in G$ and G is neutrosophic pre-compact in X. Now $x_{\alpha,\beta,\gamma} \in G \Rightarrow f(x_{\alpha,\beta,\gamma}) \in f(G) \Rightarrow y_{p,q,r} \in f(G)$. Since f is neutrosophic pre-irresolute and G is neutrosophic pre-compact in X, so by 3.39, f(G) is neutrosophic pre-compact in Y. Again since f is a neutrosophic pre*-open function, so f(G) is a σ -NPO set. Thus for any any NP $y_{p,q,r}$ in Y, there exists a σ -NPO set f(G) such that $y_{p,q,r} \in f(G)$ and f(G) is neutrosophic pre-compact in Y. Therefore (Y, σ) is neutrosophic locally pre-compact space.

5 Conclusions

In this article, we have defined neutrosophic pre-open cover with the help of neutrosophic pre-open sets and then we have defined neutrosophic pre-compact space, neutrosophic countably pre-compact space, neutrosophic pre-Lindelöf space and investigated various covering properties. We have proved that every neutrosophic pre-compact space is a neutrosophic compact space but the converse is not true. We have shown that if a neutrosophic topological space is neutrosophic pre- C_{II} then neutrosophic pre-compactness and neutrosophic countably pre-compactness are equivalent. In 3.40, we have established that neutrosophic pre-compactness (resp. neutrosophic countably pre-compactness, neutrosophic pre-Lindelöfness) is preserved under a neutrosophic pre-irresolute function. In 3.47, we have also stated and proved "Alexander subbase lemma" in case of a neutrosophic locally pre-compact space and put forward a few propositions with proofs. Hope that the findings in this article will assist the research fraternity to move forward for the development of different aspects of neutrosophic topology.

Funding: This research received no external funding.

Conflict of Interest: The authors declare no conflict of interest.

References

- [1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol. 20, pp. 87–96, 1986.
- [2] M. Arar, About Neutrosophic Countably Compactness, Neutrosophic Sets and Systems, vol. 36(1), pp. 246–255, 2020.
- [3] I. Arokiarani, R. Dhavaseelan, S. Jafari, M. Parimala, On Some New Notions and Functions in Neutrosophic Topological Space, Neutrosophic Sets and Systems, vol. 16, pp. 16–19, 2017.
- [4] K. Bageerathi, P. Puvaneswary, Neutrosophic Feebly Connectedness and Compactness, IOSR Journal of Polymer and Textile Engineering, vol. 6(3), pp. 7–13, 2019.
- [5] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, vol. 88, pp. 81–89, 1997.
- [6] I. Deli, S. Broumi, Neutrosophic soft relations and some properties, Ann. Fuzzy Math. Inform., vol. 9, pp. 169–182, 2015.
- [7] S. Dey, G. C. Ray, Pre-separation axioms in Neutrosophic Topological Spaces, Neutrosophic Sets and Systems (Accepted).
- [8] S. M. Jaber, Fuzzy Precompact Space, Journal of Physics: Conference Series 1591 012073, FISCAS 2020, Iraq, 26–27 June 2020, IOP Publishing. doi:10.1088/1742-6596/1591/1/012073.
- [9] S. Karatas, C. Kuru, Neutrosophic Topology, Neutrosophic Sets and Systems, vol. 13(1), pp. 90–95, 2016.
- [10] T. Y. Ozturk, A. Benek, A. Ozkan, Neutrosophic soft compact spaces, Afrika Matematika, vol. 32, pp. 301–316, 2021.
- [11] G. C. Ray, S. Dey, Neutrosophic point and its neighbourhood structure, Neutrosophic Sets and Systems, vol. 43, pp. 156–168, 2021.
- [12] V. V. Rao, Y. S. Rao, Neutrosophic Pre-open Sets and Pre-closed Sets in Neutrosophic Topology, International Journal of ChemTech Research, vol. 10(10), pp. 449–458, 2017.
- [13] F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability. American Research Press, Rehoboth, NM, 1999.
- [14] F. Smarandache, Neutrosophy and neutrosophic logic, First international conference on neutrosophy, neutrosophic logic, set, probability, and statistics, University of New Mexico, Gallup, NM 87301, USA, 2002.
- [15] F. Smarandache, Neutrosophic set a generalization of the intuitionistic fuzzy set, International Journal of Pure and Applied Mathematics, vol. 24(3), pp. 287–297, 2005.
- [16] A. A. Salama, S. Alblowi, Neutrosophic set and Neutrosophic Topological Spaces, IOSR Journal of Mathematics, vol. 3(4), pp. 31–35, 2012.
- [17] A. A. Salama, F. Smarandache, V. Kroumov, Closed sets and Neutrosophic Continuous Functions, Neutrosophic Sets and Systems, vol. 4, pp. 4–8, 2014.
- [18] A. A. Salama, F. Smarandache, Neutrosophic Set Theory, The Educational Publisher 415 Columbus, Ohio, 2015.
- [19] S. Şenyurt, G. Kaya, On Neutrosophic Continuity, Ordu University Journal of Science and Technology, vol. 7(2), pp. 330–339, 2017.
- [20] H. Wang, F. Smarandache, Y. Q. Zhang, R. Sunderraman, Single valued neutrosophic sets, Multispace Multistruct, vol. 4, pp. 410–413, 2010.