American Journal of Business and Operations Research

Journal DOI

https://doi.org/10.54216/AJBOR

Submit Your Paper

2692-2967ISSN (Online) 2770-0216ISSN (Print)

Volume 1 , Issue 2 , PP: 70-76, 2020 | Cite this article as | XML | Html | PDF | Full Length Article

Smart Recommendations in E-commerce: A Business Intelligence Approach for Personalized Customer Engagement and Increased Sales

Salah-ddine Krit 1 *

  • 1 Ibn Zohr University, Agadir, Morocco - (salahddine.krit@gmail.com)
  • Doi: https://doi.org/10.54216/AJBOR.010202

    Received: May 10, 2020 Accepted September 13, 2020
    Abstract

     The e-commerce industry is continuously growing, and personalized customer engagement has become a crucial aspect of business success. In this paper, we propose a smart recommendation system using a business intelligence approach to enhance customer engagement and increase sales. We explore the use of machine learning algorithms to generate personalized product recommendations, incorporating customer behavior analysis and historical data. Our proposed approach considers various factors such as purchase history, browsing history, demographics, and social media activities to generate personalized recommendations. The system's effectiveness is evaluated using metrics such as click-through rate, conversion rate, and revenue generated. We believe that our proposed approach can provide e-commerce businesses with an effective way to increase customer engagement and sales while improving the overall customer experience.

    Keywords :

    E-Commerce , Business Intelligence , Recommendation System , Customer Engagement

    References

    [1]  Fan, S., Lau, R. Y., & Zhao, J. L. (2015). Demystifying big data analytics for business intelligence through the lens of marketing mix. Big Data Research, 2(1), 28-32.

    [2]  Appelbaum, D., Kogan, A., Vasarhelyi, M., & Yan, Z. (2017). Impact of business analytics and enterprise systems on managerial accounting. International Journal of Accounting Information Systems, 25, 29-44.

    [3]  Itani,  O.  S., Agnihotri,  R.,  &  Dingus,  R.  (2017).  Social  media  use  in  B2b  sales  and  its  impact  on competitive  intelligence  collection  and  adaptive  selling:  Examining  the  role  of  learning  orientation  as  an enabler. Industrial Marketing Management, 66, 64-79.

    [4]  Griva,  A.,  Bardaki,  C.,  Pramatari,  K.,  &  Papakiriakopoulos,  D.  (2018).  Retail  business  analytics: Customer visit segmentation using market basket data. Expert Systems with Applications, 100, 1-16.

    [5]  Gunasekaran, A., Yusuf, Y. Y., Adeleye, E. O., & Papadopoulos, T. (2018). Agile manufacturing practices: the  role  of  big  data  and  business  analytics  with  multiple  case  studies.  International  Journal  of  Production Research, 56(1-2), 385-397.

    [6]  Kubina,  M.,  Koman,  G.,  &  Kubinova,  I.  (2015).  Possibility  of  improving  efficiency  within  business intelligence systems in companies. Procedia Economics and Finance, 26, 300-305.

    [7]  Laursen, G. H., & Thorlund, J. (2016). Business analytics for managers: Taking business intelligence beyond reporting. John Wiley & Sons.

    [8]  Conboy, K., Mikalef, P., Dennehy, D., & Krogstie, J. (2020). Using business analytics to enhance dynamic capabilities  in  operations  research: A  case  analysis  and  research  agenda. European  Journal  of  Operational Research, 281(3), 656-672.

    [9]  Phillips-Wren, G., Iyer, L. S., Kulkarni, U., & Ariyachandra, T. (2015). Business analytics in the context of big data: A roadmap for research. Communications of the Association for Information Systems, 37(1), 23.

    [10]  Ram, J., Zhang, C., & Koronios, A. (2016). The implications of big data analytics on business intelligence: A qualitative study in China. Procedia Computer Science, 87, 221-226.

    [11]  Duan,  L.,  &  Xiong,  Y.  (2015).  Big  data  analytics  and  business  analytics. Journal  of  Management Analytics, 2(1), 1-21.

    [12]  Peters, M. D., Wieder, B., Sutton, S. G., & Wakefield, J. (2016). Business intelligence systems use in performance measurement capabilities: Implications for enhanced competitive advantage. International Journal of Accounting Information Systems, 21, 1-17.

    [13]  Krishnamoorthi, S., & Mathew, S. K. (2018). Business analytics and business value: A comparative case study. Information & Management, 55(5), 643-666.

    [14]  Aydiner, A. S., Tatoglu, E., Bayraktar, E., Zaim, S., & Delen,  D. (2019). Business analytics and firm performance: The mediating role of business process performance. Journal of business research, 96, 228-237.

    [15]  Olszak,  C.  M.  (2016).  Toward  better  understanding  and  use  of  business  intelligence  in organizations. Information systems management, 33(2), 105-123.

    [16]  Rapp, A., Agnihotri, R., Baker, T. L., & Andzulis, J. M. (2015). Competitive intelligence collection and use  by  sales  and  service  representatives:  how  managers’  recognition  and  autonomy  moderate  individual performance. Journal of the Academy of Marketing Science, 43, 357-374.

    [17]  Duan,  Y.,  Cao,  G.,  &  Edwards,  J.  S.  (2020).  Understanding  the  impact  of  business  analytics  on innovation. European Journal of Operational Research, 281(3), 673-686.

    [18]  Rikhardsson, P., & Yigitbasioglu, O. (2018). Business intelligence & analytics in management accounting research: Status and future focus. International Journal of Accounting Information Systems, 29, 37-58.

    [19]  Banerjee,  M.,  &  Mishra,  M.  (2017).  Retail  supply  chain  management  practices  in  India: A  business intelligence perspective. Journal of Retailing and Consumer Services, 34, 248-259.

    [20]  He,  W.,  Wu,  H., Yan,  G., Akula,  V.,  &  Shen,  J.  (2015). A  novel  social  media  competitive  analytics framework with sentiment benchmarks. Information & Management, 52(7), 801-812.

    [21]  Bolton, R. N., McColl-Kennedy, J. R., Cheung, L., Gallan, A., Orsingher, C., Witell, L., & Zaki,  M. (2018). Customer experience challenges: bringing together digital, physical and social realms.  Journal of service management, 29(5), 776-808.

    [22]  Parise, S., Guinan, P. J., & Kafka, R. (2016). Solving the crisis of immediacy: How digital technology can transform the customer experience. Business Horizons, 59(4), 411-420.

    [23]  Delen, D., & Ram, S. (2018). Research challenges and  opportunities in business analytics. Journal of Business Analytics, 1(1), 2-12.

    [24]  Davenport, T. H. (2018). From analytics to artificial intelligence. Journal of Business Analytics, 1(2), 73-80.

    [25]  Kunz, W., Aksoy, L., Bart, Y., Heinonen, K., Kabadayi, S., Ordenes, F. V., ... & Theodoulidis, B. (2017). Customer engagement in a big data world. Journal of Services Marketing.

    Cite This Article As :
    Krit, Salah-ddine. Smart Recommendations in E-commerce: A Business Intelligence Approach for Personalized Customer Engagement and Increased Sales. American Journal of Business and Operations Research, vol. , no. , 2020, pp. 70-76. DOI: https://doi.org/10.54216/AJBOR.010202
    Krit, S. (2020). Smart Recommendations in E-commerce: A Business Intelligence Approach for Personalized Customer Engagement and Increased Sales. American Journal of Business and Operations Research, (), 70-76. DOI: https://doi.org/10.54216/AJBOR.010202
    Krit, Salah-ddine. Smart Recommendations in E-commerce: A Business Intelligence Approach for Personalized Customer Engagement and Increased Sales. American Journal of Business and Operations Research , no. (2020): 70-76. DOI: https://doi.org/10.54216/AJBOR.010202
    Krit, S. (2020) . Smart Recommendations in E-commerce: A Business Intelligence Approach for Personalized Customer Engagement and Increased Sales. American Journal of Business and Operations Research , () , 70-76 . DOI: https://doi.org/10.54216/AJBOR.010202
    Krit S. [2020]. Smart Recommendations in E-commerce: A Business Intelligence Approach for Personalized Customer Engagement and Increased Sales. American Journal of Business and Operations Research. (): 70-76. DOI: https://doi.org/10.54216/AJBOR.010202
    Krit, S. "Smart Recommendations in E-commerce: A Business Intelligence Approach for Personalized Customer Engagement and Increased Sales," American Journal of Business and Operations Research, vol. , no. , pp. 70-76, 2020. DOI: https://doi.org/10.54216/AJBOR.010202