349 199
Full Length Article
Volume 5 , Issue 1, PP: 29-37 , 2020


On Refined Neutrosophic Algebraic Hyperstructures I

Authors Names :   A.A.A. Agboola   1 *     M.A. Ibrahim   2     E.O. Adeleke   3     S.A. Akinleye   4  

1  Affiliation :  Department of Mathematics, Federal University of Agriculture, Abeokuta, Nigeria

    Email :  agboolaaaa@funaab.edu.ng

2  Affiliation :  Department of Mathematics, Federal University of Agriculture, Abeokuta, Nigeria

    Email :  muritalaibrahim40@gmail.com

3  Affiliation :  Department of Mathematics, Federal University of Agriculture, Abeokuta, Nigeria

    Email :  yemi376@yahoo.com

4  Affiliation :  Department of Mathematics, Federal University of Agriculture, Abeokuta, Nigeria

    Email :  saakinleye@yahoo.com

Doi   :  10.5281/zenodo.3789007

Abstract :

Given any algebraic hyperstructure (X, , ◦), the objective of this paper is to generate a refined neutrosophic algebraic hyperstructure (X(I1, I2), ', ◦') from X, I1 and I2 and study refined neutrosophic Krasner hyper-rings in particular.

Keywords :

refined neutrosophic group , refined neutrosophic ring , refined neutrosophic hyperring.

References :

[1]   A.A.A. Agboola, On Refined Neutrosophic Algebraic Structures, Neutrosophic Sets and Systems, vol.10, pp. 99-101, 2015.

[2]   A.A.A. Agboola, A.D. Akinola and O.Y. Oyebola, Neutrosophic Rings I, Int. J. of Math. Comb., vol. 4,pp. 1-14, 2011.

[3]   A.A.A. Agboola, E.O. Adeleke and S.A. Akinleye, Neutrosophic Rings II, Int. J. of Math. Comb., vol. 2,pp. 1-8, 2012.

[4]   A.A.A. Agboola, Akwu A.O. and Y.T. Oyebo, Neutrosophic Groups and Neutrosopic Subgroups, Int. J.of Math. Comb., vol. 3, pp. 1-9, 2012.

[5]   A.A.A. Agboola and B. Davvaz, On Neutrosophic Canonical Hypergroups and Neutrosophic Hyperrings,Neutrosophic Sets and Systems, vol. 2, pp. 34-41, 2014.

[6]   A.A.A. Agboola, B. Davvaz and F. Smarandache, Neutrosophic Quadruple Hyperstructures, Annals of Fuzzy Mathematics and Informatics, vol. 14, pp. 29-42, 2017.

[7]   S.A. Akinleye, F. Smarandache and A.A.A. Agboola, On Neutrosophic Quadruple Algebraic Structures,Neutrosophic Sets and Systems, vol. 12, pp. 122-126, 2016.

[8]   M. Al-Tahan and B. Davvaz, Refined neutrosophic quadruple (po-)hypergroups and their fundamental group, Neutrosophic Sets and Systems, vol. 27, pp. 138-153, 2019.

[9]   A. Asokkumar, Hyperlattice formed by the idempotents of a hyperring, Tamkang J. Math., vol. 38(3), pp.209-215, 2007.

[10] A. Asokkumar and M. Veelrajan, Characterizations of regular hyperrings, Italian J. Pure and App. Math.,vol. 22, pp. 115-124, 2007.

[11] A. Asokkumar and M. Veelrajan, Hyperrings of matrices over a regular hyperring, Italian J. Pure andApp. Math., vol. 23, pp. 113-120, 2008.

[12] A.R. Bargi, A class of hyperrings, J. Disc. Math. Sc. and Cryp., vol. 6, pp. 227-233, 2003.

[13] T. Bera, S. Broumi and N.K. Mahapatra, Behaviour of ring ideal in neutrosophic and soft sense, Neutrosophic Sets and Systems, Vol. 25(1), pp. 1-24, 2019.

[14] T. Bera and N.K. Mahapatra, On Neutrosophic Soft Prime Ideal, Neutrosophic Sets and Systems, Vol.20(6), pp. 54-75, 2018.

[15]  P. Corsini, Prolegomena of Hypergroup Theory, Second edition, Aviain editore, 1993.

[16] P. Corsini and V. Leoreanu, Applications of Hyperstructure Theory, Advances in Mathematics, KluwerAcademic Publishers, Dordrecht, 2003.

[17] B. Davvaz, Polygroup Theory and Related Systems, World Sci. Publ., 2013.

[18] B. Davvaz, Isomorphism theorems of hyperrings, Indian J. Pure Appl. Math., vol. 35(3), pp. 321-333,2004.

[19] B. Davvaz, Approximations in hyperrings, J. Mult.-Valued Logic Soft Comput., vol. 15(5-6), pp. 471-488, 2009.

[20] B. Davvaz and A. Salasi, A realization of hyperrings, Comm. Algebra, vol. 34, pp. 4389-4400, 2006.

[21] B. Davvaz and T. Vougiouklis, Commutative rings obtained from hyperrings (Hv-rings) with α∗-relations, Comm. Algebra, vol. 35, pp. 3307-3320, 2007.

[22] B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and Applications, International Academic Press,USA, 2007.

[23] M. De Salvo, Hyperrings and hyperfields, Annales Scientifiques de l’Universite de Clermont-Ferrand II,vol. 22, pp. 89-107, 1984.

[24] E.O. Adeleke, A.A.A. Agboola and F. Smarandache, Refined Neutrosophic Rings I, International Journalof Neutrosophic Science (IJNS), vol. 2(2), pp. 77-81, 2020. (DOI:10.5281/zenodo.3728222)

[25] E.O. Adeleke, A.A.A. Agboola and F. Smarandache, Refined Neutrosophic Rings II, International Journal of Neutrosophic Science (IJNS), vol. 2(2), pp. 89-94, 2020. (DOI:10.5281/zenodo.3728235)

[26] F. Smarandache(2003), A Unifying Field in Logics: Neutrosophic Logic, Neutrosophy, Neutrosophic Set, Neutrosophic Probability, (3rd edition), American Research Press, Rehoboth,http://fs.gallup.unm.edu/eBook-Neutrosophic4.pdf.

[27] F. Smarandache, n-Valued Refined Neutrosophic Logic and Its Applications in Physics, Progress in Physics, USA, vol. 4, pp. 143-146, 2013.

[28] F. Smarandache, (T,I,F)- Neutrosophic Structures, Neutrosophic Sets and Systems, vol. 8, pp. 3-10, 2015.

[29] M.A. Ibrahim, A.A.A. Agboola, E.O. Adeleke and S.A. Akinleye, Introduction to Neutrosophic Subtraction Algebra and Neutrosophic Subtraction Semigroup, International Journal of Neutrosophic Science (IJNS), vol. 2(1), pp. 47-62, 2020. (DOI:10.5281/zenodo.3724603)

[30] K. Krasner, A class of hyperrings and hyperfields, Int. J. Math. and Math. Sci., vol. 6(2), pp. 307-311, 1983.

[31]  F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandinaves, Stockholm,Sweden, pp. 45-49, 1934.

[32] S. Mirvakili, S.M. Anvariyeh and B. Davvaz, On α-relation and transitivity conditions of α, Comm.Algebra, vol. 36, pp. 1695-1703, 2008.

[33] S. Mirvakili and B. Davvaz, Applications of the α∗-relation to Krasner hyperrings, J. Algebra, vol. 362,pp. 145-156, 2012.

[34] J. Mittas, Hypergroupes canoniques, Math. Balkanica, vol. 2, pp. 165-179, 1972.

[35] Muthusamy Velrajan and Arjunan Asokkumar, Note on Isomophism Theorems of Hyperrings, Int. J.Math. Math. Sc., Hindawi Publishing Corporation, pp. 1-12, 2010.

[36] A. Nakassis, Expository and survey article of recent results in hyperring and hyperfield theory, Internat.J. Math. Math. Sci., vol. 11, pp. 209-220, 1988.

[37] R. Rota, Strongly distributive multiplicative hyperrings, J. Geo., vol. 39(1-2), pp. 130-138, 1990.

[38] M. S¸tefanescu, Constructions of hyperfields and hyperrings, Stud. Cercet. S¸tiint¸. Ser. Mat. Univ. Bac ˘ au ˘No., vol. 16, pp. 563-571, 2006.

[39] W.B. Vasantha Kandasamy and F. Smarandache, Neutrosophic Rings, Hexis, Phoenix, Arizona, 2006 http://fs.gallup.unm.edu/NeutrosophicRings.pdf

[40] T. Vougiouklis, Hyperstructures and their Representations, Hadronic Press, Inc, 115, Palm Harber, USA,1994.

[41] T. Vougiouklis, The fundamental relation in hyperrings. The general hyperfield, Proc. Fourth Int.Congress on Algebraic Hyperstructures and Applications (AHA 1990), World Scientific, pp. 203-211,1991