International Journal of BIM and Engineering Science

Journal DOI

https://doi.org/10.54216/IJBES

Submit Your Paper

2571-1075ISSN (Online)

Volume 5 , Issue 2 , PP: 66-73, 2022 | Cite this article as | XML | Html | PDF | Full Length Article

Road Safety Requirements

Manar M. Nassef 1 *

  • 1 Department of Civil Engineering, Delta Higher Institute for Engineering and Technology, Egypt - (manar.nassef2@gmail.com)
  • Doi: https://doi.org/10.54216/IJBES.050205

    Received: May 18, 2022 Accepted: August 11, 2022
    Abstract

    Frequent and severe traffic accidents have become a major concern because they hinder the sustainable development of society. Elements of roadway design play an important role in determining the risk of traffic accidents. Where, the geometry of the road has an effect on both the severity and frequency of road accidents. Road safety is affected by a variety of factors related to the behavior of drivers and the quality of the infrastructure. Some solutions need to be provided in order to reduce the number of traffic accidents, and safety performance functions (SPFs) are essential to the implementation of science-based road safety management. This is because it is preferable to provide preventative protection than to deal with the after-effects of an accident. The ability to address this issue is also dependent on having information about the safety conditions of the road network as well as the amount of finances that are available for the implementation of new road safety initiatives. It also requires the prioritization of the various interventions that may generate benefits, increasing safety, while ensuring that reasonable steps are taken to remedy the deficiencies detected within a reasonable timeframe. Roadside accidents are often considered to be among the "most merciless" types of accidents. It is possible to significantly lessen the severity of collisions by designing roadsides to be more "forgiving". A roadside design that is more forgiving has a limited effect on lowering the overall number of accidents, but it has a significant impact on reducing the severity of collisions, which in turn reduces the number of fatal and injury accidents.

    Keywords :

    Road safety , Safety performance functions , Roadside Safety

    References

    [1]  Asal, H. I., & Said, D. G.,  An approach for  development of local safety performance functions for multi-lane rural divided highways in Egypt. Transportation research record, 2673(10), 510 -521, 2019.

    [2]  Ismail,  M.  A.,  &  Abdelmageed,  S.  M.,  Cost  of  road  traffic  accidents  in  Egypt.  International Journal of Humanities and Social Sciences, 4(6), 1219-1225, 2010.

    [3]  Puvanachandra, P., Hoe, C., El-Sayed, H. F., Saad, R., Al-Gasseer, N., Bakr, M., & Hyder, A., A.  .Road  traffic  injuries  and  data  systems  in  Egypt:  addressing  the  challenges.  Traffic  injury prevention, 13(sup1), 44-56, 2012.

    [4]  Bagnara,  S.,  Tartaglia,  R.,  Albolino,  S.,  Alexander,  T.,  &  Fujita,  Y.  20th  Congress  of  the International Ergonomics Association (IEA 2018).

    [5]  Lee, J., & Mannering, F.,  Impact of roadside features on the frequency and  severity of run-offroadway  accidents:  an  empirical  analysis.  Accident  Analysis  &  Prevention,  34(2),  149 -161, 2002.

    [6]  Yau, K. K.,  Risk factors affecting the severity of single vehicle traffic accidents in Hong Kong. Accident Analysis & Prevention, 36(3), 333-340, 2004.

    [7]  Giuffrè, O., Granà, A., Giuffrè, T., & Marino, R.,  Accounting for dispersion and correlation in estimating  safety  performance  functions.  An  overview  starting  from  a  case  study.  Modern Applied Science, 7(2), 11,2013.

    [8]  Malik, F., & Jabbar, S. F. S. F. F. R. M., Road accidents and prevention. International journal of engineering development and research, 5(2), 40-46, 2017.

    [9]  Roque,  C.,  Cardoso,  J.  L.,  Connell,  T.,  Schermers,  G.,  &  Weber,  R.,  Topic  analysis  of  road safety inspections using  latent Dirichlet allocation: A case study of roadside safety in Irish main roads. Accident Analysis& Prevention, 131, 336-349, 2019.

    [10]   Eenink,  R.,  Reurings,  M.,  Elvik,  R.,  Cardoso,  J.,  Wichert,  S.,  &  Stefan,  C.  (2008).  Accident prediction  models  and  road  safety  impact  assessment:  recommendations  for  using  these  tools. Institute for Road Safety Research, Leidschendam.

    [11]   Proctor, S., Belcher, M., & Cook, P. (2001). Practical road safety auditing. Thomas Telford.

    [12]   Matena, S., Weber, R., Huber, C., Hruby, Z., Pokorny, P., Gaitanidou, E., Vaneerdewegh, P., Strnad,  B.,  Cardoso,  J.L.,  Schermers,  G.,  Elvik,  R.,  2007.  Road  Safety  Audit  –  Best  Practice Guidelines. Qualification for Auditors and Programming. Ripcord-Iserest Report D4.2. BASt.

    [13]   Sørensen, M. (2007). Best practice guidelines on black spot management and safety analysis of road networks. Oslo: Transportøkonomisk institutt.

    [14]   Cardoso,  J.  L.,  Stefan,  C.,  Elvik,  R.,  &  Sorensen,  M.  (2005).  Road  Safety  Inspections:  best practice and implementation plan. European Union.

    [15]   ElMoghazi, Y. (2019). Road safety challenges in Egypt: A discussion of policy alternatives.

    [16]   Lord,  D.,  &  Mannering,  F.,  The  statistical  analysis  of  crash-frequency  data:  A  review  and assessment of methodological  alternatives. Transportation research part A: policy and practice, 44(5), 291-305, 2010.

    [17]   Savolainen,  P.  T.,  Mannering,  F.  L.,  Lord,  D.,  &  Quddus,  M.  A.,  The  statistical  analysis  of highway  crash-injury  severities:  A  review  and  assessment  of  methodological  alternatives. Accident Analysis & Prevention, 43(5), 1666-1676, 2011.

    [18]   Mannering,  F.  L.,  &  Bhat,  C.  R.,  Analytic  methods  in  accident  research:  Methodological frontier and future directions. Analytic methods in accident research, 1, 1 -22, 2014. 

    [19]   Srinivasan,  R.,  &  Bauer,  K.  M.  (2013).  Safety  performance  function  development  guide: Developing jurisdiction-specific SPFs (No. FHWA-SA-14-005). United States. Federal Highway Administration. Office of Safety.

    [20]   National Research Council (US). Transportation Research Board. Task Force on Development of the Highway Safety Manual, & Transportation Officials. Joint Task Force on the Highway Safety Manual. (2010). Highway safety manual (Vol. 1). AASHTO.

    [21]   Hauer,  E.  (1997).  Observational  before/after  studies  in  road  safety.  estimating  the  effect  of highway and traffic engineering measures on road safety.

    [22]   Cafiso,  S.,  D'Agostino,  C.,  &  Persaud,  B.,  Investigating  the  influence  of  segmentation  in estimating  safety  performance  functions  for  roadway  sections.  Journal  of  traffic  and transportation engineering (English edition), 5(2), 129 -136, 2018.

    [23]   Resende, P. T. V., & Benekohal, R. F., Effects of roadway section length on accident modeling. In  Proceedings  of  the  1997  Conference  on  Traffic  Congestion  and  Traffic  Safety  in  the  21st Century, 1997.

    [24]   Qin,  X.,  &  Wellner,  A. (2012).  Segment  length  impact  on  highway  safety  screening  analysis (No. 12-0644).

    [25]   Ogle, J. H., Alluri, P., & Sarasua, W. (2011). MMUCC and MIRE: The role of  segmentation in safety  analysis.  In  Proceedings  of  the  Paper  Presented  at  the  90th  Annual  Meeting  of  the Transportation Research Board.

    [26]   Elagamy,  S.  R.,  El-Badawy,  S.  M.,  Shwaly,  S.  A.,  Zidan,  Z.  M.,  &  Shahdah,  U.  E., Segmentation effect on developing safety performance functions for rural arterial roads in Egypt. Innovative Infrastructure Solutions, 5(2), 1-12, 2020.

    [27]   Thompson, R., Martinez, A., Naing, C., Hoschopf, H., Dupre, G., Bisson, O., ... & Garcia, J. (2006). European Best Practice for  Roadside Design: Guidelines for Roadside Infrastructure on New and Existing Roads.

    [28]   Cheng,  G.,  Cheng,  R.,  Pei,  Y.,  &  Han,  J.,  Research  on  highway  roadside  safety.  Journal  of advanced transportation, 2021.

    [29]   Barry, F. (2013). CEO National Roads Authority.

    [30]   Patte,  L.  (2002).  Handling  lateral  obstacles  on  main  roads  in  open  country.  Sétra  Guidelines, November.

    [31]   Lockhart, P. A., Cronin, D. S., & Watson, B.,  Frontal impact response for pole crash scenarios. Traffic injury prevention, 14(5), 509-519, 2013.

    [32]   Karim,  H.,  Magnusson,  R.,  &  Wiklund,  M.,  ssessment  of  injury  rates  associated  with  road barrier collision. Procedia-social and behavioral sciences, 48, 52-63, 2012.

    Cite This Article As :
    M., Manar. Road Safety Requirements. International Journal of BIM and Engineering Science, vol. , no. , 2022, pp. 66-73. DOI: https://doi.org/10.54216/IJBES.050205
    M., M. (2022). Road Safety Requirements. International Journal of BIM and Engineering Science, (), 66-73. DOI: https://doi.org/10.54216/IJBES.050205
    M., Manar. Road Safety Requirements. International Journal of BIM and Engineering Science , no. (2022): 66-73. DOI: https://doi.org/10.54216/IJBES.050205
    M., M. (2022) . Road Safety Requirements. International Journal of BIM and Engineering Science , () , 66-73 . DOI: https://doi.org/10.54216/IJBES.050205
    M. M. [2022]. Road Safety Requirements. International Journal of BIM and Engineering Science. (): 66-73. DOI: https://doi.org/10.54216/IJBES.050205
    M., M. "Road Safety Requirements," International Journal of BIM and Engineering Science, vol. , no. , pp. 66-73, 2022. DOI: https://doi.org/10.54216/IJBES.050205