Fusion: Practice and Applications

Journal DOI

https://doi.org/10.54216/FPA

Submit Your Paper

2692-4048ISSN (Online) 2770-0070ISSN (Print)

Volume 21 , Issue 2 , PP: 327-335, 2026 | Cite this article as | XML | Html | PDF | Full Length Article

EEG Signal Classification for Mental States Using Deep Learning

Abdulrahman W. H. Al-Askari 1 *

  • 1 Northern Technical University, Iraq - (abdulrahman21@ntu.edu.iq)
  • Doi: https://doi.org/10.54216/FPA.210220

    Received: March 19, 2025 Revised: June 12, 2025 Accepted: August 07, 2025
    Abstract

    In recent years, EEG based recognition and characterization of brain states has received much interest due to the advances in deep learning and machine learning methods. The non-invasive and highly inexpensive activity of EEG presents a patient with details concerning the activity and the conditions of the brain. The synthesis of artificial intelligence (AI) models (convolutional neural networks (CNNs), long short-term memory networks (LSTMs), and collaborative knowledge options has been explored in a series of studies that recognize the mental state accurately in a large number of cases. The literature focuses on introducing strong, explainable models as well as on multimodal data to boost classification accurateness and reliability. The results are a 1D CNN and a LSTM network were trained separately and in a hybrid, architecture (CNN-LSTM) to classify the EEG signals. The models were appraised using accurateness, accuracy, recollection, F1-score, and confusion matrix analysis.

    Keywords :

    EEG , Deep Learning , Mental State Classification , CNN-LSTM , Brain-Computer Interface

    References

    [1]          J. Ruiz De Miras, A. J. Ibáñez-Molina, M. F. Soriano, and S. Iglesias-Parro, “Schizophrenia classification using machine learning on resting state EEG signal,” Biomed. Signal Process. Control, vol. 79, Jan. 2023, Art. no. 104233. doi: 10.1016/j.bspc.2022.104233.

     

    [2]          J. Teo, L. Hou, J. Tian, and J. Mountstephens, “Classification of affective states via EEG and deep learning,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 5, 2018. doi: 10.14569/IJACSA.2018.090517.

     

    [3]          A. Rahman, M. I. Siraji, L. I. Khalid et al., “Detection of mental state from EEG signal data: An investigation with machine learning classifiers,” in 2022 14th Int. Conf. Knowl. Smart Technol. (KST), Jan. 2022, pp. 152–156. doi: 10.1109/KST53302.2022.9729084.

     

    [4]          P. Bashivan, I. Rish, and S. Heisig, “Mental state recognition via wearable EEG,” arXiv: 1602.00985, Jun. 5, 2016. doi: 10.48550/arXiv.1602.00985.

     

    [5]          SEED Dataset. [Online]. Available: https://bcmi.sjtu.edu.cn/home/seed/

     

    [6]          H. Masruroh, E. M. Imah, and E. Rahmawati, “Classification of emotional state based on EEG signal using AMGLVQ,” Procedia Comput. Sci., vol. 157, pp. 552–559, 2019. doi: 10.1016/j.procs.2019.09.013.

     

    [7]          O. AlShorman, M. Masadeh, M. B. B. Heyat et al., “Frontal lobe real-time EEG analysis using machine learning techniques for mental stress detection,” J. Integr. Neurosci, vol. 21, no. 1, p. 20, 2022. doi: 10.31083/j.jin2101020.

     

    [8]          W. Ma, Y. Zheng, T. Li, Z. Li, Y. Li, and L. Wang, “A comprehensive review of deep learning in EEG-based emotion recognition: Classifications, trends, and practical implications,” PeerJ Comput. Sci., vol. 10, p. e2065, May 2024. doi: 10.7717/peerj-cs.2065.

     

    [9]          S. Rasheed, “A review of the role of machine learning techniques towards brain–computer interface applications,” Mach. Learn. Knowl. Extr., vol. 3, no. 4, pp. 835–862, 2021. doi: 10.3390/make3040042.

     

    [10]       Appriou, A. Cichocki, and F. Lotte, “Modern machine-learning algorithms: For classifying cognitive and affective states from electroencephalography signals,” IEEE Syst., Man, Cybern. Mag., vol. 6, no. 3, pp. 29–38, 2020. doi: 10.1109/MSMC.2020.2968638.

     

    [11]       M. J. Rivera, M. A. Teruel, A. Maté, and J. Trujillo, “Diagnosis and prognosis of mental disorders by means of EEG and deep learning: A systematic mapping study,” Artif. Intell. Rev., vol. 55, no. 2, pp. 1209–1251, 2022. doi: 10.1007/s10462-021-09986-y.

     

    [12]       D. R. Edla, K. Mangalorekar, G. Dhavalikar, and S. Dodia, “Classification of EEG data for human mental state analysis using random forest classifier,” Procedia Comput. Sci., vol. 132, pp. 1523–1532, 2018. doi: 10.1016/j.procs.2018.05.116.

     

    [13]       S.-Y. Han, N.-S. Kwak, T. Oh, and S.-W. Lee, “Classification of pilots’ mental states using a multimodal deep learning network,” Biocybern. Biomed. Eng., vol. 40, no. 1, pp. 324–336, 2020. doi: 10.1016/j.bbe.2019.12.002.

     

    [14]       Z. Jiao, X. Gao, Y. Wang, J. Li, and H. Xu, “Deep convolutional neural networks for mental load classification based on EEG data,” Pattern Recognit., vol. 76, pp. 582–595, Apr. 2018. doi: 10.1016/j.patcog.2017.12.002.

     

    [15]       S. Sridhar and V. Manian, “EEG and deep learning based brain cognitive function classification,” Computers, vol. 9, no. 4, p. 104, 2020. doi: 10.3390/computers9040104.

     

    [16]       K. Ajith, R. Menaka, and S. S. Kumar, “EEG based mental state analysis,” J. Phys., Conf. Ser., vol. 1911, no. 1, p. 012014, 2021. doi: 10.1088/1742-6596/1911/1/012014.

     

    [17]       Y. Badr, U. Tariq, F. Al-Shargie, F. Babiloni, F. Al Mughairbi, and H. Al-Nashash, “A review on evaluating mental stress by deep learning using EEG signals,” Neural Comput. Appl., vol. 36, no. 21, pp. 12629–12654, 2024. doi: 10.1007/s00521-024-09809-5.

     

    [18]       R. Alhalaseh and S. Alasasfeh, “Machine-learning-based emotion recognition system using EEG signals,” Computers, vol. 9, no. 4, p. 95, 2020. doi: 10.3390/computers9040095.

     

    [19]       H. Manoharan, S. L. A. Haleem, S. Shitharth et al., “A machine learning algorithm for classification of mental tasks,” Comput. Electr. Eng., vol. 99, Apr. 2022, Art. no. 107785. doi: 10.1016/j.compeleceng.2022.107785.

     

    [20]       H. Dose, J. S. Møller, H. K. Iversen, and S. Puthusserypady, “An end-to-end deep learning approach to MI-EEG signal classification for BCIs,” Expert Syst. Appl., vol. 114, pp. 532–542, Dec. 2018. doi: 10.1016/j.eswa.2018.08.031.

     

    [21]       R. Katmah, F. Al-Shargie, U. Tariq, F. Babiloni, F. Al-Mughairbi, and H. Al-Nashash, “A review on mental stress assessment methods using EEG signals,” Sensors, vol. 21, no. 15, p. 5043, 2021. doi: 10.3390/s21155043.

     

    [22]       Y.-T. Lan, K. Ren, Y. Wang et al., “Seeing through the brain: Image reconstruction of visual perception from human brain signals,” arXiv: 2308.02510, Aug. 16, 2023. doi: 10.48550/arXiv.2308.02510.

     

    [23]       C. Anders and B. Arnrich, “Wearable electroencephalography and multi-modal mental state classification: A systematic literature review,” Comput. Biol. Med., vol. 150, Nov. 2022, Art. no. 106088. doi: 10.1016/j.compbiomed.2022.106088.

     

    [24]       R. Nahon, N. Bagheri, G. Varni, E. Tartaglione, and V.-T. Nguyen, “Mental state classification using EEG signals: Ethics, law and challenges,” in Mach. Learn. Princ. Pract. Knowl. Discov. Databases, R. Meo and F. Silvestri, Eds., vol. 2133. Cham, Switzerland: Springer Nature, 2025. doi: 10.1007/978-3-031-74630-7_28.

     

    [25]       D. Pathak, R. Kashyap, and S. Rahamatkar, “A study of deep learning approach for the classification of electroencephalogram (EEG) brain signals,” in Artif. Intell. Mach. Learn. Edge Comput. Elsevier, 2022. doi: 10.1016/B978-0-12-824054-0.00009-5.

     

    [26]       Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: A review,” J. Neural Eng., vol. 16, no. 3, p. 031001, 2019. doi: 10.1088/1741-2552/ab0ab5.

     

    [27]       M. A. Ozdemir, M. Degirmenci, O. Guren, and A. Akan, “EEG based emotional state estimation using 2-D deep learning technique,” in 2019 Med. Technol. Congr. (TIPTEKNO), Oct. 2019, pp. 1–4. doi: 10.1109/TIPTEKNO.2019.8895158.

    Cite This Article As :
    W., Abdulrahman. EEG Signal Classification for Mental States Using Deep Learning. Fusion: Practice and Applications, vol. , no. , 2026, pp. 327-335. DOI: https://doi.org/10.54216/FPA.210220
    W., A. (2026). EEG Signal Classification for Mental States Using Deep Learning. Fusion: Practice and Applications, (), 327-335. DOI: https://doi.org/10.54216/FPA.210220
    W., Abdulrahman. EEG Signal Classification for Mental States Using Deep Learning. Fusion: Practice and Applications , no. (2026): 327-335. DOI: https://doi.org/10.54216/FPA.210220
    W., A. (2026) . EEG Signal Classification for Mental States Using Deep Learning. Fusion: Practice and Applications , () , 327-335 . DOI: https://doi.org/10.54216/FPA.210220
    W. A. [2026]. EEG Signal Classification for Mental States Using Deep Learning. Fusion: Practice and Applications. (): 327-335. DOI: https://doi.org/10.54216/FPA.210220
    W., A. "EEG Signal Classification for Mental States Using Deep Learning," Fusion: Practice and Applications, vol. , no. , pp. 327-335, 2026. DOI: https://doi.org/10.54216/FPA.210220