Fusion: Practice and Applications

Journal DOI

https://doi.org/10.54216/FPA

Submit Your Paper

2692-4048ISSN (Online) 2770-0070ISSN (Print)

Volume 1 , Issue 1 , PP: 40-48, 2020 | Cite this article as | XML | Html | PDF | Full Length Article

Study of Multi-Prime RSA

Surinder Kaur 1 * , Shivani Mankotia 2 , Pooja Bharadwaj 3

  • 1 Information Technology Bharati Vidyapeeth's College of Engg, New Delhi, India - (kaur.surinder@bharatividyapeeth.edu)
  • 2 Information Technology Bharati Vidyapeeth's College of Engg, New Delhi, India - (mankotias@acm.org)
  • 3 Information Technology Bharati Vidyapeeth's College of Engg, New Delhi, India - (bharadwajp@acm.org)
  • Doi: https://doi.org/10.54216/FPA.010105

    Abstract

    This paper studies and analyses the encryption and decryption times of a popular variant of the RSA algorithm, the multi-prime RSA. This algorithm uses more than two prime numbers for the encryption process. In this paper, 3, 4, and 5 prime RSA algorithms have been implemented and studied. The rate of increase of encryption and decryption times concerning the number of primes used is also illustrated and compared graphically.

    Keywords :

    RSA algorithm , encryption , decryption , n-prime RSA

    References

    [1]    Milanov, E. (2009). The RSA algorithm. RSA Laboratories, 1-11. 

    [2]    Bahig, H. M., Bhery, A., & Nassr, D. I. (2012, October). Cryptanalysis of multi-prime RSA with small prime difference. In International Conference on Information and Communications Security (pp. 33-44). Springer, Berlin, Heidelberg. 

    [3]    Zheng, M., & Hu, H. (2015). A New Factoring Attack on Multi-Prime RSA with Small Prime Difference. IACR Cryptology ePrint Archive, 2015, 1137

    [4]    Damgård, I., Mikkelsen, G. L., & Skeltved, T. (2014, December). On the security of distributed multiprime RSA. In International Conference on Information Security and Cryptology (pp. 18-33). Springer, Cham. 

    [5]    Srivenkatesh, M., & Vanitha, K. Implementing Multiprime RSA Algorithm to Enhance the Data Security in Federated Cloud Computing. International Journal of Advanced Research in Computer and Communication EngineeringVol, 4. 

    [6]    Collins, T., Hopkins, D., Langford, S., & Sabin, M. (1998). U.S. Patent No. 5,848,159. Washington, DC: U.S. Patent and Trademark Office.

    [7]    Takagi, T. (1998, August). Fast RSA-type cryptosystem modulo p k q. In Annual International Cryptology Conference (pp. 318-326). Springer, Berlin, Heidelberg. 

    [8]    Takagi, T., & Naito, S. (2002). U.S. Patent No. 6,396,926. Washington, DC: U.S. Patent and Trademark Office. 

    [9]    Prakash, G. L., Prateek, M., & Singh, I. (2014, July). Data encryption and decryption algorithms using key rotations for data security in cloud system. In 2014 International Conference on Signal Propagation and Computer Technology (ICSPCT 2014) (pp. 624-629). IEEE. 

    [10] Hinek, M. J., Low, M. K., & Teske, E. (2002, August). On some attacks on multi-prime RSA. In International Workshop on Selected Areas in Cryptography (pp. 385-404). Springer, Berlin, Heidelberg. 

    [11] Xia, Z. Z. Z. On the Variants and Speed Methods of RSA.

    [12] Goshwe, N. Y. (2013). Data encryption and decryption using RSA algorithm in a network environment. International Journal of Computer Science and Network Security (IJCSNS), 13(7), 9. 

    [13] Shinde, G. N., & Fadewar, H. S. (2008, April). Faster RSA algorithm for decryption using Chinese remainder theorem. In International Conference on Computational and Experimental Engineering and Sciences (ICCES) (Vol. 5, No. 4, pp. 255-262). 

    [14] Boneh, D., & Shacham, H. (2002). Fast variants of RSA. CryptoBytes, 5(1), 1-9.

     

     

     

    Cite This Article As :
    Kaur, Surinder. , Mankotia, Shivani. , Bharadwaj, Pooja. Study of Multi-Prime RSA. Fusion: Practice and Applications, vol. , no. , 2020, pp. 40-48. DOI: https://doi.org/10.54216/FPA.010105
    Kaur, S. Mankotia, S. Bharadwaj, P. (2020). Study of Multi-Prime RSA. Fusion: Practice and Applications, (), 40-48. DOI: https://doi.org/10.54216/FPA.010105
    Kaur, Surinder. Mankotia, Shivani. Bharadwaj, Pooja. Study of Multi-Prime RSA. Fusion: Practice and Applications , no. (2020): 40-48. DOI: https://doi.org/10.54216/FPA.010105
    Kaur, S. , Mankotia, S. , Bharadwaj, P. (2020) . Study of Multi-Prime RSA. Fusion: Practice and Applications , () , 40-48 . DOI: https://doi.org/10.54216/FPA.010105
    Kaur S. , Mankotia S. , Bharadwaj P. [2020]. Study of Multi-Prime RSA. Fusion: Practice and Applications. (): 40-48. DOI: https://doi.org/10.54216/FPA.010105
    Kaur, S. Mankotia, S. Bharadwaj, P. "Study of Multi-Prime RSA," Fusion: Practice and Applications, vol. , no. , pp. 40-48, 2020. DOI: https://doi.org/10.54216/FPA.010105