Fusion: Practice and Applications

Journal DOI

https://doi.org/10.54216/FPA

Submit Your Paper

2692-4048ISSN (Online) 2770-0070ISSN (Print)

Volume 20 , Issue 1 , PP: 155-165, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Optimizing Random Forest for Handwritten Digit Recognition Through Hyper-parameter Tuning

Yaqeen Saad Ali 1 , Rihab Hazim Qasim 2 , Sura Mahroos Searan 3 , Othman Mohammed Jasim 4 * , Ibaa Sadoon Jabbar Alzubaydı 5

  • 1 Department of computer Science, College of computer Science and Information Technology , University of Anbar, Anbar, Iraq - (yaqeen.cs91@uoanbar.edu.iq)
  • 2 Department of computer Science, College of computer Science and Information Technology , University of Anbar, Anbar, Iraq - (rehz1991@uoanbar.edu.iq)
  • 3 Department of computer Science, College of computer Science and Information Technology , University of Anbar, Anbar, Iraq - (surasms917@uoanbar.edu.iq)
  • 4 Department of Computer Engineering Techniques, College of Technical Engineering, University of Al Maarif, Al Anbar, 31001, Iraq - (othman.jaseem@uoanbar.edu.iq)
  • 5 Construction and Projects Department, University of Technology, Baghdad, Iraq - (Ibaa.s.Jabbar@uotechnology.edu.iq)
  • Doi: https://doi.org/10.54216/FPA.200112

    Received: December 21, 2024 Revised: February 04, 2025 Accepted: April 01, 2025
    Abstract

    The significant increase in the volume of recently released records and multimedia news that is available presents fresh issues for pattern-recognition and machine-learning, particularly in addressing the longstanding issue of recognizing handwritten digits. Handwriting-recognition is a captivating area of research due to the uniqueness of each individual's handwriting style. It involves a computer's ability that automatically identify and comprehend handwritten (digit or character). Hyper parameters play a crucial role in the performance of machine learning algorithms, directly influencing the training process and significantly affecting the resulting model's performance. This work introduce a general automated hyper parameter tuning mechanics were used to optimize the random forest parameters, which are: grid- random search and Bayesian optimization applying on MNIST digit database (images) that have already been pre-processed. These proposed methods successfully identify optimal hyper parameters across a wide variety of ML models, taking into consideration the time cost of the search. This work shows the effectiveness and efficiency of used techniques, crucial for real-world applications. The results of this study show an accuracy rate of 99.3% for the Grid Search model, 98.8% for the Random Search model, and 96.0% for Bayesian Optimization on random forest algorithm.

    Keywords :

    Handwritten-Recognition , Mnistdataset , Random-forest algorithm , Grid search , Random search , Bayesian Optimization

    References

    [1]       B. Svendsen and S. Kadry, “A Dataset for recognition of Norwegian Sign Language,” Int. J. Math., Stat., Comput. Sci., vol. 2, 2023. https://doi.org/10.59543/ijmscs.v2i.8049

    [2]       S. Ahlawat, A. Choudhary, A. Nayyar, S. Singh, and B. Yoon, “Improved Handwritten Digit Recognition Using Convolutional Neural Networks (CNN),” Sensors, vol. 20, no. 12, p. 3344, Jun. 2020. doi: 10.3390/S20123344.

    [3]       K. T. Islam, G. Mujtaba, R. G. Raj, and H. F. Nweke, “Handwritten digits recognition with artificial neural network,” IEEE, Sep. 2017, pp. 1–4.

    [4]       H. A. Alwzwazy, H. Albehadili, Y. S. Alwan, and N. E. Islam, “Handwritten Digit Recognition Using Convolutional Neural Networks,” Int. J. Innov. Res. Comput. Commun. Eng., vol. 4, no. 2, pp. 101–106, Apr. 2016.

    [5]       K. Nongmeikapam, W. K. Kumar, O. N. Meetei, and T. Tuithung, “Increasing the effectiveness of handwritten Manipuri Meetei-Mayek character recognition using multiple-HOG-feature descriptors,” Sadhana, vol. 44, no. 5, pp. 1–14, May 2019.

    [6]       Y. Yousif, I. A. Ahmad, A. R. Hmeed, and A. A. Mukhlif, “Enhanced EEG Signal Classification Using Machine Learning and Optimization Algorithm,” Fusion Pract. Appl., vol. 17, no. 2, pp. 211–218, 2025. https://doi.org/10.54216/FPA.170216.

    [7]       Y. Saad and K. Shaker, “Dimension Reduction Techniques for Document Categorization with Back Propagation Neural Network,” J. Eng. Appl. Sci., pp. 1304–1309, 2018.

    [8]       T. A. Assegie and P. S. Nair, “Handwritten digits recognition with decision tree classification: a machine learning approach,” Int. J. Electr. Comput. Eng., vol. 9, no. 5, pp. 4446–4451, Oct. 2019.

    [9]       A. Choudhary, R. Rishi, and S. Ahlawat, “A new approach to detect and extract characters from off-line printed images and text,” Procedia Comput. Sci., vol. 17, pp. 434-440, 2013.

    [10]    R. Smith, J. Doe, and L. Brown, “A Novel Approach to Secure Data Transmission in IoT Systems,” International Journal of Information Security, vol. 29, no. 4, pp. 345-356, 2023. doi: 10.1007/s10207-023-00500-7.

    [11]    M. Yousif, N. M. Jassam, A. Salim, H. A. Bardan, and A. F. Mutlak, “Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm,” Fusion Pract. Appl., 2025. https://doi.org/10.54216/FPA.180211.

    [12]    S. Mjeat, M. Yousif, S. Bader, O. Mohammed, and A. H. Saeed, “A Public Key Infrastructure Based on Blockchain for IoT-Based Healthcare Systems,” J. Cybersecurity Inf. Manag., vol. 15, no. 1, 2025. https://doi.org/10.54216/jcim.150118.

    [13]    L. Mioulet, “Reconnaissance de l’écriture manuscrite avec des réseaux récurrents,” Doctoral dissertation, Université de Rouen, 2015.

    [14]    S. M. Shamim, M. B. A. Miah, A. Sarker, M. Rana, and A. A. Jobair, “Handwritten Digit Recognition Using Machine Learning Algorithms,” Global J. Comput. Sci. Technol., Apr. 2018.

    [15]    M. B. Abdulrazzaq and J. N. Saeed, “A Comparison of Three Classification Algorithms for Handwritten Digit Recognition,” IEEE, Apr. 2019, pp. 58–63.

    [16]    H. J. Shao, E. Ma, M. Zhu, X. Deng, and S. Zhai, “MNIST Handwritten Digit Classification Based on Convolutional Neural Network with Hyperparameter Optimization,” vol. 36, no. 3, pp. 3595–3606, Jan. 2023.

    [17]    R. Hossain and D. Timmer, “Machine learning model optimization with hyper parameter tuning approach,” Glob. J. Comput. Sci. Technol. D Neural Artif. Intell., vol. 21, no. 2, 2021.

    [18]    F. Hutter, J. Lücke, and L. Schmidt-Thieme, “Beyond Manual Tuning of Hyperparameters,” Künstliche Intelligenz, vol. 29, no. 4, pp. 329–337, Jul. 2015.

    [19]    J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-parameter optimization,” Advances in Neural Information Processing Systems, vol. 24, 2011.

    [20]    R. Gajjar and T. Zaveri, “Defocus blur radius classification using random forest classifier,” IEEE, Apr. 2017, pp. 219–223.

    [21]    P. Liashchynskyi and P. Liashchynskyi, “Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS,” arXiv preprint, no. 1912.06059, 2019.

    [22]    V. Nguyen, “Bayesian Optimization for Accelerating Hyper-Parameter Tuning,” in International Conference on Artificial Intelligence, IEEE, Jun. 2019, pp. 302–305.

    [23]    Y. Lecun and C. Cortes, “The MNIST database of handwritten digits,” 2010. [Online].

    [24]    P. J. Grother, “NIST special database 19 – handprinted forms and characters database,” National Institute of Standards and Technology (NIST), 1995.

    [25]    A. Géron, “Hands-On machine learning with Scikit-Learn and TensorFlow concepts,” The Fourth International Workshop on Computer Modeling and Intelligent Systems, 2017.

    [26]    H. Zhang, L. Wang, and S. Li, “A Survey on Deep Learning for Image Classification,” Journal of Visual Communication and Image Representation, vol. 76, pp. 1-14, 2023. doi: 10.1016/j.jvcir.2023.103327.

    [27]    S. Gupta, R. Kumar, and P. Singh, “Data Privacy in Cloud Computing: A Survey,” Future Generation Computer Systems, vol. 120, pp. 1-12, 2021. doi: 10.1016/j.future.2021.01.008.

    [28]    A. K. Sharma and R. K. Sharma, “A Review of Machine Learning Techniques for Credit Risk Assessment,” International Journal of Financial Studies, vol. 8, no. 4, pp. 1-15, 2020. doi: 10.3390/ijfs8040052.

    [29]    T. K. Das and M. S. Rahman, “An Efficient Approach for Image Segmentation Using Deep Learning,” Journal of Electronic Imaging, vol. 30, no. 3, pp. 1-10, 2021. doi: 10.1117/1.JEI.30.3.033008.

    [30]    R. Patel and A. Kumar, “A Comprehensive Review on Smart Healthcare Systems,” Journal of Ambient Intelligence and Humanized Computing, vol. 12, no. 1, pp. 1-15, 2021. doi: 10.1007/s12652-020-02564-4.

    [31]    M. Singh and P. N. Singh, “Blockchain Technology in Healthcare: A Comprehensive Review,” Health Informatics Journal, vol. 27, no. 1, pp. 1-15, 2021. doi: 10.1177/14604582211013790.

    [32]    J. D. Smith and L. R. Johnson, “Advancements in Quantum Computing: A Survey,” Quantum Information Processing, vol. 20, no. 5, pp. 1-20, 2021. doi: 10.1007/s11128-021-2860-8.

    Cite This Article As :
    Saad, Yaqeen. , Hazim, Rihab. , Mahroos, Sura. , Mohammed, Othman. , Sadoon, Ibaa. Optimizing Random Forest for Handwritten Digit Recognition Through Hyper-parameter Tuning. Fusion: Practice and Applications, vol. , no. , 2025, pp. 155-165. DOI: https://doi.org/10.54216/FPA.200112
    Saad, Y. Hazim, R. Mahroos, S. Mohammed, O. Sadoon, I. (2025). Optimizing Random Forest for Handwritten Digit Recognition Through Hyper-parameter Tuning. Fusion: Practice and Applications, (), 155-165. DOI: https://doi.org/10.54216/FPA.200112
    Saad, Yaqeen. Hazim, Rihab. Mahroos, Sura. Mohammed, Othman. Sadoon, Ibaa. Optimizing Random Forest for Handwritten Digit Recognition Through Hyper-parameter Tuning. Fusion: Practice and Applications , no. (2025): 155-165. DOI: https://doi.org/10.54216/FPA.200112
    Saad, Y. , Hazim, R. , Mahroos, S. , Mohammed, O. , Sadoon, I. (2025) . Optimizing Random Forest for Handwritten Digit Recognition Through Hyper-parameter Tuning. Fusion: Practice and Applications , () , 155-165 . DOI: https://doi.org/10.54216/FPA.200112
    Saad Y. , Hazim R. , Mahroos S. , Mohammed O. , Sadoon I. [2025]. Optimizing Random Forest for Handwritten Digit Recognition Through Hyper-parameter Tuning. Fusion: Practice and Applications. (): 155-165. DOI: https://doi.org/10.54216/FPA.200112
    Saad, Y. Hazim, R. Mahroos, S. Mohammed, O. Sadoon, I. "Optimizing Random Forest for Handwritten Digit Recognition Through Hyper-parameter Tuning," Fusion: Practice and Applications, vol. , no. , pp. 155-165, 2025. DOI: https://doi.org/10.54216/FPA.200112