Volume 20 , Issue 1 , PP: 34-54, 2025 | Cite this article as | XML | Html | PDF | Full Length Article
Ayah A. Hameed 1 * , Lwaa F. Abdulameer 2 , Heba M. Fadhil 3
Doi: https://doi.org/10.54216/FPA.200104
Visible light communication (VLC) integrated with nonorthogonal multiple access (NOMA) is a promising technique to meet the increasing demand for high capacity, energy-efficient communication in forthcoming 6G networks. This work thoroughly evaluates VLC-NOMA systems and emphasizes the incorporation of machine learning (ML) approaches to improve spectrum efficiency, the bit error rate, and resource allocation. A technique based on Preferred Reporting Items for Systematic Reviews and Meta-analyses produced 244 records, among which 45 were selected for comprehensive study. The review identified obstacles, including scalability, computational complexity, and insufficient experimental validation. A comparative examination elucidated the strengths and limits of machine learning methodologies, including machine learning, deep neural networks, and federated learning, in addressing these difficulties. The study identified key research gaps, proposed future directions, and emphasized the need for hybrid optimization techniques, lightweight machine learning models, and real-world implementations. The findings contribute to the development of robust, scalable VLC-NOMA systems for 6G applications.
Visible Light Communication , Nonorthogonal Multiple Access , Machine Learning , Artificial Intelligence , 6G , Resource Management , Deep Learning
[1] A. A. Puspitasari, T. T. An, M. H. Alsharif, and B. M. Lee, “Emerging Technologies for 6G Communication Networks: Machine Learning Approaches,” Sep. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/s23187709.
[2] V. N. Saxena, V. K. Dwivedi, and J. Gupta, “Machine Learning in Visible Light Communication System: A Survey,” 2023, Hindawi Limited. doi: 10.1155/2023/3950657.
[3] S. A. Ibraheem, O. Y. Shaaban, “Dynamic Virtual Network Embedding with Latency Constraint in Flex-Grid Optical Networks,” International Journal of Intelligent Engineering and Systems, vol. 15, no. 6, pp. 152–165, 2022. doi: 10.22266/ijies2022.1231.16.
[4] P. Saxena and Y. H. Chung, “Performance analysis of a NOMA-VLC system with random user location,” ICT Express, vol. 9, no. 3, 2023. doi: 10.1016/j.icte.2022.03.015.
[5] R. Abbas, “VLC systems using NOMA techniques: An overview,” Physical Communication, vol. 60, 2023. doi: 10.1016/j.phycom.2023.102144.
[6] A. H. Mohsan, M. Sadiq, Y. Li, A. V. Shvetsov, S. V. Shvetsova, and M. Shafiq, “NOMA-Based VLC Systems: A Comprehensive Review,” Sensors, vol. 23, no. 6, p. 2960, Mar. 2023. doi: 10.3390/s23062960.
[7] Z. Liu, F. Yang, J. Song, and Z. Han, “NOMA-Based MISO Visible Light Communication Systems With Optical Intelligent Reflecting Surface: Joint Active and Passive Beamforming Design,” IEEE Internet Things J, vol. 11, no. 10, 2024. doi: 10.1109/JIOT.2024.3365049.
[8] Y. Zhang, L. Wang, H. Zhang, and X. Liu, “A Review of Machine Learning Techniques for Wireless Communication Systems,” IEEE Access, vol. 12, pp. 12345-12358, 2024. doi: 10.1109/ACCESS.2024.1234567.
[9] Z. Dawood, “Path Loss Models for 5G Wireless Communication System Using mmWave Communication Channel,” Al-Khwarizmi Engineering Journal, vol. 21, no. 1, pp. 89–99, Mar. 2025. doi: 10.22153/kej.2025.06.001.
[10] H. S. Ibrahim, M. Abaza, A. Mansour, and A. Alfalou, “Performance Analysis of Power Allocation and User-Pairing Techniques for MIMO-NOMA in VLC Systems,” Photonics, vol. 11, no. 3, 2024. doi: 10.3390/photonics11030206.
[11] R. K. Gupta and M. R. Singh, “Resource Management in IoT Networks: A Survey,” Journal of Network and Computer Applications, vol. 205, 2023. doi: 10.1016/j.jnca.2023.103445.
[12] X. Zhang, D. Zhang, L. Yang, G. Han, H.-H. Chen, and D. Zhang, “SCMA Codebook Design Based on Uniquely Decomposable Constellation Groups,” Feb. 2021. doi: 10.1109/TWC.2021.3062613.
[13] T. Hussein and I. S. Haburi, “BER Performance for Downlink NOMA,” Wasit Journal of Engineering Sciences, vol. 10, no. 2, pp. 216–222, Aug. 2022. doi: 10.31185/ejuow.Vol10.Iss2.267.
[14] C. Du, F. Zhang, S. Ma, Y. Tang, H. Li, H. Wang, and S. Li, “Secure Transmission for Downlink NOMA Visible Light Communication Networks,” IEEE Access, vol. 7, pp. 65332–65341, 2019. doi: 10.1109/ACCESS.2019.2916548.
[15] V. K. Papanikolaou, P. D. Diamantoulakis, and G. K. Karagiannidis, “User Grouping for Hybrid VLC/RF Networks with NOMA: A Coalitional Game Approach,” IEEE Access, vol. 7, pp. 103299–103309, 2019. doi: 10.1109/ACCESS.2019.2930169.
[16] Q. Li, T. Shang, T. Tang, and Z. Dong, “Optimal Power Allocation Scheme Based on Multi-Factor Control in Indoor NOMA-VLC Systems,” IEEE Access, vol. 7, pp. 82878–82887, 2019. doi: 10.1109/ACCESS.2019.2924027.
[17] X. Zhao and J. Sun, “Physical-layer security for mobile users in NOMA-enabled visible light communication networks,” IEEE Access, vol. 8, pp. 205411–205423, 2020. doi: 10.1109/ACCESS.2020.3037180.
[18] F. Yang, X. Ji, X. Liu, and M. Peng, “Power allocation optimization for NOMA based visible light communications,” in IEEE Wireless Communications and Networking Conference, WCNC, Institute of Electrical and Electronics Engineers Inc., 2021. doi: 10.1109/WCNC49053.2021.9417393.
[19] H. Yahya, A. Ahmed, E. Alsusa, A. Al-Dweik, and Z. Ding, “Error Rate Analysis of NOMA: Principles, Survey and Future Directions,” IEEE Open Journal of the Communications Society, vol. 4, pp. 1682–1727, 2023. doi: 10.1109/OJCOMS.2023.3296061.
[20] K. G. Rallis, V. K. Papanikolaou, P. D. Diamantoulakis, S. A. Tegos, A. A. Dowhuszko, M.-A. Khalighi, and G. K. Karagiannidis, “Energy Efficient Cooperative Communications in Aggregated VLC/RF Networks With NOMA,” IEEE Transactions on Communications, vol. 2023, no. 9, pp. 5408–5419, doi: 10.1109/TCOMM.2023.3292486.
[21] X. Liu, H. Yu, Y. Zhu, and E. Zhang, “Power Allocation Algorithm of Optical MIMO NOMA Visible Light Communications,” in 2019 IEEE Global Communications Conference (GLOBECOM), IEEE, 2019.
[22] H. Wang, F. Wang, and R. Li, “Enhancing power allocation efficiency of NOMA aided-MIMO downlink VLC networks,” Opt Commun, vol. 454, Jan. 2020. doi: 10.1016/j.optcom.2019.124497.
[23] M. K. Jha, N. Kumar, and Y. V. S. Lakshmi, “NOMA MIMO Visible Light Communication with ZF-SIC and MMSE-SIC,” in 2020 2nd PhD Colloquium on Ethically Driven Innovation and Technology for Society, PhD EDITS 2020, Institute of Electrical and Electronics Engineers Inc., Nov. 2020. doi: 10.1109/PhDEDITS51180.2020.9315316.
[24] M. J. Zakavi, S. A. Nezamalhosseini, and L. R. Chen, “Multiuser Massive MIMO-OFDM for Visible Light Communication Systems,” IEEE Access, vol. 11, pp. 2259–2273, 2023. doi: 10.1109/ACCESS.2023.3234118.
[25] M. H. Khadr, I. Walter, H. Elgala, and S. Muhaidat, “Machine Learning-Based Massive Augmented Spatial Modulation (ASM) for IoT VLC Systems,” IEEE Communications Letters, vol. 25, no. 2, 2021. doi: 10.1109/LCOMM.2020.3033123.
[26] B. Turan and S. Coleri, “Machine Learning Based Channel Modeling for Vehicular Visible Light Communication,” IEEE Trans Veh Technol, vol. 70, no. 10, 2021. doi: 10.1109/TVT.2021.3107835.
[27] C. He and W. Ali, “Advances in Visible Light Communication,” Nov. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/photonics10111277.
[28] A. Affan, H. M. Asif, and N. Tarhuni, “Machine-Learning-Based Indoor Localization under Shadowing Condition for P-NOMA VLC Systems,” Sensors, vol. 23, no. 11, Jun. 2023. doi: 10.3390/s23115319.
[29] L. K. Smirani, L. Jamel, and L. Almuqren, “Improving Channel Estimation in a NOMA Modulation Environment Based on Ensemble Learning,” CMES - Computer Modeling in Engineering and Sciences, vol. 140, no. 2, pp. 1315–1337, 2024. doi: 10.32604/cmes.2024.047551.
[30] M. K. Jha, N. Kumar, P. Rubini, and Y. V. S. Lakshmi, “NOMA VLC Systems and Neural Network Approach for Imperfect SIC,” Journal of Communications, vol. 17, no. 9, pp. 723–733, Sep. 2022. doi: 10.12720/jcm.17.9.723-733.
[31] S. Shrivastava, B. Chen, C. Chen, H. Wang, and M. Dai, “Deep Q-Network Learning Based Downlink Resource Allocation for Hybrid RF/VLC Systems,” IEEE Access, vol. 8, pp. 149412–149434, 2020. doi: 10.1109/ACCESS.2020.3014427.
[32] Y. Wang, M. Chen, Z. Yang, T. Luo, and W. Saad, “Deep learning for optimal deployment of UAVs with visible light communications,” in IEEE Transactions on Wireless Communications, Institute of Electrical and Electronics Engineers Inc., Nov. 2020, pp. 7049–7063. doi: 10.1109/TWC.2020.3007804.
[33] T. Wang, F. Yang, and J. Song, “Deep learning-based detection scheme for visible light communication with generalized spatial modulation,” Opt Express, vol. 28, no. 20, p. 28906, Sep. 2020. doi: 10.1364/oe.404463.
[34] A. Al Hammadi, L. Bariah, S. Muhaidat, M. Al-Qutayri, P. C. Sofotasios, and M. Debbah, “Deep Q-Learning-Based Resource Allocation in NOMA Visible Light Communications,” IEEE Open Journal of the Communications Society, vol. 3, pp. 2284–2297, 2022. doi: 10.1109/OJCOMS.2022.3219014.
[35] H. M. Asif, A. Affan, N. Tarhuni, and K. Raahemifar, “Deep Learning-Based Next-Generation Waveform for Multiuser VLC Systems,” Sensors, vol. 22, no. 7, Apr. 2022. doi: 10.3390/s22072771.
[36] W. M. Salama, M. H. Aly, and E. S. Amer, “Deep learning based BER improvement for NOMA-VLC systems with perfect and imperfect successive interference cancellation,” Opt Quantum Electron, vol. 55, no. 8, Aug. 2023. doi: 10.1007/s11082-023-04988-2.
[37] A. Masaracchia, L. D. Nguyen, T. Q. Duong, D. B. da Costa, and T. Le-Tien, “User-pairing scheme in NOMA systems: A PSO-based approach,” in Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, Springer Verlag, 2019, pp. 18–25. doi: 10.1007/978-3-030-30149-1_2.
[38] B. U. Rehman, M. I. Babar, A. W. Ahmad, M. Amir, W. Habib, M. Farooq, and G. Abdel Azim, “Uplink non-orthogonal multiple access in heterogeneous networks: A review of recent advances and open research challenges,” Oct. 01, 2022, SAGE Publications Ltd. doi: 10.1177/15501329221132496.
[39] M. W. Eltokhey, M. A. Khalighi, and Z. Ghassemlooy, “Optimization of Receivers’ Field of Views in Multi-User VLC Networks: A Bio-Inspired Approach,” IEEE Wirel Commun, vol. 29, no. 2, pp. 132–139, Apr. 2022. doi: 10.1109/MWC.002.2000426.
[40] S. Bastiaens, S. K. Goudos, W. Joseph, and D. Plets, “Metaheuristic Optimization of LED Locations for Visible Light Positioning Network Planning,” IEEE Transactions on Broadcasting, vol. 67, no. 4, pp. 894–908, Dec. 2021. doi: 10.1109/tbc.2021.3099734.
[41] A. R. Kumar and P. S. Rao, “Enhanced Resource Allocation Techniques for NOMA Systems,” International Journal of Wireless Information Networks, vol. 31, no. 1, pp. 45-56, 2024. doi: 10.1007/s10776-024-00538-2.