Fusion: Practice and Applications

Journal DOI

https://doi.org/10.54216/FPA

Submit Your Paper

2692-4048ISSN (Online) 2770-0070ISSN (Print)

Volume 19 , Issue 2 , PP: 170-186, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

A Novel Binary Swordfish Movement Optimization Algorithm (BSMOA) for Efficient Feature Selection

El-Sayed M. El-kenawy 1 * , Amel Ali Alhussan 2 , Doaa Sami Khafaga 3 , Amal H. Alharbi 4 , Sarah A. Alzakari 5 , Abdelaziz A. Abdelhamid 6 , Abdelhameed Ibrahim 7 , Marwa M. Eid 8

  • 1 School of ICT, Faculty of Engineering, Design and Information, Communications Technology (EDICT), Bahrain Polytechnic, PO Box 33349, Isa Town, Bahrain; Applied Science Research Center. Applied Science Private University, Amman, Jordan; Jadara University Research Center, Jadara University, Jordan - (sayed.elkenawy@polytechnic.bh)
  • 2 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia - (aaalhussan@pnu.edu.sa)
  • 3 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia - (dskhafga@pnu.edu.sa)
  • 4 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia - (ahalharbi@pnu.edu.sa)
  • 5 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia - (saalzakari@pnu.edu.sa)
  • 6 Department of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University, Cairo 11566, Egypt; Department of Computer Science, College of Computing and Information Technology, Shaqra University, 11961, Shaqra, Saudi Arabia - (abdelaziz@cis.asu.edu.eg)
  • 7 School of ICT, Faculty of Engineering, Design and Information, Communications Technology (EDICT), Bahrain Polytechnic, PO Box 33349, Isa Town, Bahrain - (abdelhameed.fawzy@polytechnic.bh)
  • 8 Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura 11152, Egypt - (mmm@ieee.org)
  • Doi: https://doi.org/10.54216/FPA.190213

    Received: December 17, 2024 Revised: February 09, 2025 Accepted: March 03, 2025
    Abstract

    As optimization tasks become increasingly complex, particularly in feature selection, there is a growing need for algorithms capable of robustly balancing exploration and exploitation. In this work, we propose the Binary Swordfish Movement Optimization Algorithm (BSMOA), inspired by the synchronized and agile movements of swordfish. BSMOA employs adaptive parameters to navigate high-dimensional search spaces through dynamic exploration, exploitation, and elimination stages. Extensive experiments on benchmark datasets demonstrate that BSMOA outperforms state-of-the-art algorithms, including bHHO, bGWO, and bPSO, regarding average error, feature reduction, and computational efficiency. Key contributions of BSMOA include its improved balance between global and local search and its ability to achieve stable and accurate feature selection. This work has broad implications for applications in machine learning, engineering design, and other optimization domains, providing a reliable tool for tackling challenging binary optimization problems.

    Keywords :

    Binary optimization , Feature selection , Novel metaheuristic algorithm , Swordfish Movement Optimization , Exploration-exploitation balance

    References

    [1] N. Chopra and M. Mohsin Ansari. Golden jackal optimization: A novel nature-inspired optimizer for engineering applications. Expert Systems with Applications, 198:116924, 2022.

    [2] L. Abualigah, M. A. Elaziz, P. Sumari, Z. W. Geem, and A. H. Gandomi. Reptile search algorithm (rsa):  A nature-inspired meta-heuristic optimizer. Expert Systems with Applications, 191:116158, 2022.

    [3] G. Dhiman, M. Garg, A. Nagar, V. Kumar, and M. Dehghani. A novel algorithm for global optimization: Rat swarm optimizer. Journal of Ambient Intelligence and Humanized Computing, 12(8):8457–8482, 2021.

    [4] M. Hamza Zafar, N. Mujeeb Khan, A. Feroz Mirza, M. Mansoor, N. Akhtar, M. Usman Qadir, N. Ali Khan, and S. K. Raza Moosavi. A novel meta-heuristic optimization algorithm based mppt control technique for pv systems under complex partial shading condition. Sustainable Energy Technologies and Assessments, 47:101367, 2021.

    [5] A. Mohammadi-Balani, M. Dehghan Nayeri, A. Azar, and M. Taghizadeh-Yazdi. Golden eagle optimizer: A nature-inspired metaheuristic algorithm. Computers & Industrial Engineering, 152:107050, 2021.

    [6] I. Naruei and F. Keynia. Wild horse optimizer: A new meta-heuristic algorithm for solving engineering optimization problems. Engineering with Computers, 38(4):3025–3056, 2022.

    [7] J. Hu, H. Chen, A. A. Heidari, M.Wang, X. Zhang, Y. Chen, and Z. Pan. Orthogonal learning covariance matrix for defects of grey wolf optimizer: Insights, balance, diversity, and feature selection. Knowledge- Based Systems, 213:106684, 2021.

    [8] M. Abdel-Basset, R. Mohamed, and M. Abouhawwash. Crested porcupine optimizer: A new natureinspired metaheuristic. Knowledge-Based Systems, 284:111257, 2024.

    [9] G. Hu, Y. Zheng, L. Abualigah, and A. G. Hussien. Detdo: An adaptive hybrid dandelion optimizer for engineering optimization. Advanced Engineering Informatics, 57:102004, 2023.

    [10] J.-S. Chou and D.-N. Truong. A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean. Applied Mathematics and Computation, 389:125535, 2021.

    [11] A. O. Alsaiari, E. B. Moustafa, H. Alhumade, H. Abulkhair, and A. Elsheikh. A coupled artificial neural network with artificial rabbits optimizer for predicting water productivity of different designs of solar stills. Advances in Engineering Software, 175:103315, 2023.

    [12] B. Abdollahzadeh, F. Soleimanian Gharehchopogh, and S. Mirjalili. Artificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems. International Journal of Intelligent Systems, 36(10):5887–5958, 2021.

    [13] A. Kaveh, S. Talatahari, and N. Khodadadi. Stochastic paint optimizer: Theory and application in civil engineering. Engineering with Computers, 38(3):1921–1952, 2022.

    [14] C. Huang, X. Zhou, X. Ran, Y. Liu, W. Deng, and W. Deng. Co-evolutionary competitive swarm optimizer with three-phase for large-scale complex optimization problem. Information Sciences, 619:2–18, 2023.

    [15] Y. Gao, Y. Zhou, and Q. Luo. An efficient binary equilibrium optimizer algorithm for feature selection. IEEE Access, 8:140936–140963, 2020.

    [16] M. Abd Elaziz, A. Dahou, L. Abualigah, L. Yu, M. Alshinwan, A. M. Khasawneh, and S. Lu. Advanced metaheuristic optimization techniques in applications of deep neural networks: A review. Neural Computing and Applications, 33(21):14079–14099, 2021.

    [17] M. Abdel-Basset, R. Mohamed, K. M. Sallam, and R. K. Chakrabortty. Light spectrum optimizer: A novel physics-inspired metaheuristic optimization algorithm. Mathematics, 10(19):Article 19, 2022.

    [18] A. A. Abdelhamid, S. K. Towfek, N. Khodadadi, A. A. Alhussan, D. S. Khafaga, M. M. Eid, and A. Ibrahim. Waterwheel plant algorithm: A novel metaheuristic optimization method. Processes, 11(5):Article 5, 2023.

    [19] J. O. Agushaka, A. E. Ezugwu, and L. Abualigah. Gazelle optimization algorithm: A novel natureinspired metaheuristic optimizer. Neural Computing and Applications, 35(5):4099–4131, 2023.

    [20] S. Talatahari, M. Azizi, M. Tolouei, B. Talatahari, and P. Sareh. Crystal structure algorithm (crystal): A metaheuristic optimization method. IEEE Access, 9:71244–71261, 2021.

    [21] F. A. Hashim, E. H. Houssein, K. Hussain, M. S. Mabrouk, and W. Al-Atabany. Honey badger algorithm: New metaheuristic algorithm for solving optimization problems. Mathematics and Computers in Simulation, 192:84–110, 2022.

    [22] F. A. Hashim, K. Hussain, E. H. Houssein, M. S. Mabrouk, and W. Al-Atabany. Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems. Applied Intelligence, 51(3):1531–1551, 2021.

    [23] E. Pira. City councils evolution: A socio-inspired metaheuristic optimization algorithm. Journal of Ambient Intelligence and Humanized Computing, 14(9):12207–12256, 2023.

    [24] M. H. Sulaiman and Z. Mustaffa. Optimal power flow incorporating stochastic wind and solar generation by metaheuristic optimizers. Microsystem Technologies, 27(9):3263–3277, 2021.

     

    Cite This Article As :
    M., El-Sayed. , Ali, Amel. , Sami, Doaa. , H., Amal. , A., Sarah. , A., Abdelaziz. , Ibrahim, Abdelhameed. , M., Marwa. A Novel Binary Swordfish Movement Optimization Algorithm (BSMOA) for Efficient Feature Selection. Fusion: Practice and Applications, vol. , no. , 2025, pp. 170-186. DOI: https://doi.org/10.54216/FPA.190213
    M., E. Ali, A. Sami, D. H., A. A., S. A., A. Ibrahim, A. M., M. (2025). A Novel Binary Swordfish Movement Optimization Algorithm (BSMOA) for Efficient Feature Selection. Fusion: Practice and Applications, (), 170-186. DOI: https://doi.org/10.54216/FPA.190213
    M., El-Sayed. Ali, Amel. Sami, Doaa. H., Amal. A., Sarah. A., Abdelaziz. Ibrahim, Abdelhameed. M., Marwa. A Novel Binary Swordfish Movement Optimization Algorithm (BSMOA) for Efficient Feature Selection. Fusion: Practice and Applications , no. (2025): 170-186. DOI: https://doi.org/10.54216/FPA.190213
    M., E. , Ali, A. , Sami, D. , H., A. , A., S. , A., A. , Ibrahim, A. , M., M. (2025) . A Novel Binary Swordfish Movement Optimization Algorithm (BSMOA) for Efficient Feature Selection. Fusion: Practice and Applications , () , 170-186 . DOI: https://doi.org/10.54216/FPA.190213
    M. E. , Ali A. , Sami D. , H. A. , A. S. , A. A. , Ibrahim A. , M. M. [2025]. A Novel Binary Swordfish Movement Optimization Algorithm (BSMOA) for Efficient Feature Selection. Fusion: Practice and Applications. (): 170-186. DOI: https://doi.org/10.54216/FPA.190213
    M., E. Ali, A. Sami, D. H., A. A., S. A., A. Ibrahim, A. M., M. "A Novel Binary Swordfish Movement Optimization Algorithm (BSMOA) for Efficient Feature Selection," Fusion: Practice and Applications, vol. , no. , pp. 170-186, 2025. DOI: https://doi.org/10.54216/FPA.190213