Volume 17 , Issue 2 , PP: 279-293, 2025 | Cite this article as | XML | Html | PDF | Full Length Article
Raghad. H. Abood 1 * , Ali. H. Hamad 2
Doi: https://doi.org/10.54216/FPA.170221
Retinopathy is a progressive and common retinal disease that most progressive diabetics suffer from and causes blood vessels in the retina to swell and leak blood and fluid. This condition requires timely diagnosis via medical experts to prevent causing visual loss among patients. To enhance the feasibility of checking many persons, diverse deep-learning schemes have recently been developed for diabetic retinopathy detection. In this paper, retinopathy image detection system based on diverse deep learning schemes (VGG-19, DenseNet-121, and EfficientNet-B6) has been presented. The implemented deep learning schemes with multi-label classification are trained and tested using the Asia Pacific Tele Ophthalmology Society (APTOS-2019) dataset, and the two combined datasets Indian Diabetic Retinopathy Image Dataset (IDRiD) and Messidor-2. The system outcomes of classification are exhibited as sensitivity, precision, F1Score, and accuracy measurements, and the system performance is compared with recently existing related systems. The attained outcomes indicate that the implemented EfficientNetB6 network outperforms peers’ schemes and related systems via realizing supreme accuracy using balanced multi-class retinopathy datasets.
Retinopathy, Classification System , Deep Learning Schemes , Multi-label classification , VGG-19, DenseNet-121 , EfficientNet-B6
[1] Krishnan Sangeetha, K. Valarmathi, T. Kalaichelvi, S. Subburaj (2023).A broad study of machine learning and deep learning techniques for diabetic retinopathy based on feature extraction, detection and classification, Measurement: Sensors, Vol. 30,100951,https://doi.org/10.1016/j.measen.2023.100951.
[2] V. Sathananthavathi, G. Indumathi (2023). 9 - Deep learning approaches for the retinal vasculature segmentation in fundus images, Computational Methods and Deep Learning for Ophthalmology, AcademicPress,pp.139-155. https://doi.org/10.1016/B978-0-323-95415-0.00010-3.
[3] Tsiknakis, N., Theodoropoulos, D., Manikis, G., Ktistakis, E., Boutsora, O., Berto, A., Scarpa, F., Scarpa, A., Fotiadis, D. I., & Marias, K. (2021b). Deep learning for diabetic retinopathy detection and classification based on fundus images: A review. Computers in Biology and Medicine, 135, 104599. https://doi.org/10.1016/j.compbiomed.2021.104599
[4] Mohammad Z. Atwany, Abdulwahab H. Sahyoun, Mohammad Yaqub (2022), Deep Learning Techniques for Diabetic Retinopathy Classification: A Survey, in IEEE Access, vol. 10, pp. 28642-28655, doi: 10.1109/ACCESS.2022.3157632.
[5] Nikos Tsiknakis, Dimitris Theodoropoulos, Georgios Manikis, Emmanouil Ktistakis, Ourania Boutsora, Alexa Berto, Fabio Scarpa, Alberto Scarpa, Dimitrios I. Fotiadis, Kostas Marias (2021). Deep learning for diabetic retinopathy detection and classification based on fundus images: A review, Computers in Biology and Medicine, Vol. 135, 104599. https://doi.org/10.1016/j.compbiomed.2021.104599.
[6] Saad Albawi, M. H. Arif, Jumana Waleed (2022). Skin cancer classification dermatologist-level based on deep learning model, Acta Scientiarum. Technology, vol. 45, no. 1, e61531. https://doi.org/10.4025/actascitechnol.v45i1.61531.
[7] Muhammad H. Obaid, Ali H. Hamad (2023). Deep learning approach for oil pipeline leakage detection using image-based edge detection techniques, Journal Européen des Systèmes Automatisés, Vol. 56, No. 4, pp. 663-673. https://doi.org/10.18280/jesa.560416.
[8] Rubina Sarki, Khandakar Ahmed, Hua Wang, Yanchun Zhang (2020). Automatic Detection of Diabetic Eye Disease Through Deep Learning Using Fundus Images: A Survey, in IEEE Access, vol. 8, pp. 151133-151149. doi: 10.1109/ACCESS.2020.3015258.
[9] ] Jiang, H., Xu, J., Shi, R., Yang, K., Zhang, D., Gao, M., Ma, H., & Qian, W. (2020). A Multi-Label Deep Learning Model with Interpretable Grad-CAM for Diabetic Retinopathy Classification. IEEE. https://doi.org/10.1109/embc44109.2020.9175884
[10] Gour, N., & Khanna, P. (2020). Multi-class multi-label ophthalmological disease detection using transfer learning based convolutional neural network. Biomedical Signal Processing and Control, 66, 102329. https://doi.org/10.1016/j.bspc.2020.102329
[11] Paisan Ruamviboonsuk, Richa Tiwari, Rory Sayres, Variya Nganthavee, Kornwipa Hemarat, Apinpat Kongprayoon, Rajiv Raman, Brian Levinstein, Yun Liu, Mike Schaekermann, Roy Lee, Sunny Virmani, Kasumi Widner, John Chambers, Fred Hersch, Lily Peng, Dale R Webster (2022). Real-time diabetic retinopathy screening by deep learning in a multisite national screening programme: a prospective interventional cohort study. Lancet Digit Health. 4(4):e235-e244. doi: 10.1016/S2589-7500(22)00017-6.
[12] Hongyang Jiang, Yilin Hou, Hanpei Miao, Haili Ye, Mengdi Gao, Xiaoling Li, Richu Jin, Jiang Liu (2023). Eye tracking based deep learning analysis for the early detection of diabetic retinopathy: A pilot study, Biomedical Signal Processing and Control, Volume 84, 104830. https://doi.org/10.1016/j.bspc.2023.104830.
[13] ] Jiang, H., Xu, J., Shi, R., Yang, K., Zhang, D., Gao, M., Ma, H., & Qian, W. (2020b). A Multi-Label Deep Learning Model with Interpretable Grad-CAM for Diabetic Retinopathy Classification. IEEE. https://doi.org/10.1109/embc44109.2020.9175884
[14] Pan, X., Jin, K., Cao, J., Liu, Z., Wu, J., You, K., Lu, Y., Xu, Y., Su, Z., Jiang, J., Yao, K., & Ye, J. (2020). Multi-label classification of retinal lesions in diabetic retinopathy for automatic analysis of fundusfluorescein angiography based on deep learning. Graefe S Archive for Clinical and Experimental Ophthalmology, 258(4), 779–785. https://doi.org/10.1007/s00417-019-04575-w
[15] Vinuja S., Krishna Sameera A., Kaushek Kumar T. R., Uma Meenakshi R., Karthika R. (2021). Performance Analysis of Diabetic Retinopathy Classification using CNN, 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, pp. 823-828. doi: 10.1109/ICIRCA51532.2021.9544730.
[16] Sai Kiran Reddy Meruva, Venkata Guru Sukesh Tulasi, Nithin Vinnakota, V Bhavana (2022). Risk Level Prediction of Diabetic Retinopathy based on Retinal Images using Deep Learning Algorithm, Procedia Computer Science, Volume 215, pp. 722-730. https://doi.org/10.1016/j.procs.2022.12.074.
[17] T.R. Athira, Jyothisha J Nair (2023). Diabetic Retinopathy Grading From Color Fundus Images: An Autotuned Deep Learning Approach, Procedia Computer Science, Vol 218, pp. 1055-1066. https://doi.org/10.1016/j.procs.2023.01.085.
[18] Bam Bahadur Sinha, R. Dhanalakshmi, K. Balakrishnan (2023). 2 - Early diagnosis of diabetic retinopathy using deep learning techniques, Computational Methods and Deep Learning for Ophthalmology, Academic Press, pp. 17-33. https://doi.org/10.1016/B978-0-323-95415-0.00006-1.
[19] Serena Sunkari, Ashish Sangam, Venkata Sreeram P., Suchetha M., Rajiv Raman, Ramachandran Rajalakshmi, Tamilselvi S. (2024). A refined ResNet18 architecture with Swish activation function for Diabetic Retinopathy classification, Biomedical Signal Processing and Control, Volume 88, Part A, 105630, https://doi.org/10.1016/j.bspc.2023.105630.
[20] Aravind Eye Hospital, APTOS 2019 blindness detection. https://www.kaggle.com/datasets/mariaherrerot/aptos2019. Accessed on 20/09/2023.
[21] Prasanna Porwal, Samiksha Pachade, Ravi Kamble, Manesh Kokare, Girish Deshmukh, Vivek Sahasrabuddhe, Fabrice Meriaudeau (2018). Indian diabetic retinopathy image dataset (IDRiD): a database for diabetic retinopathy screening research, Data 3 (3), https://doi.org/10.3390/data3030025.
[22] Etienne Decenci`ere, Xiwei Zhang, Guy Cazuguel, Bruno Lay, B´eatrice Cochener, Caroline Trone, Philippe Gain, Richard Ordonez, Pascale Massin, Ali Erginay, B´eatrice Charton, Jean-Claude Klein (2014). Feedback on a publicly distributed database: the Messidor database, Image Anal. Stereol. 33 (3). https://doi.org/10.5566/ias.1155.
[23] Messidor-2. https://www.kaggle.com/datasets/xyaustin/messidor2.
[24] H. Zafari et al., "Using Deep Learning with Canadian Primary Care Data for Disease Diagnosis", Deep Learning for Biomedical Data Analysis, Springer, Cham, 2021. https://doi.org/10.1007/978-3-030-71676-9_12
[25] Devi, T. G., Patil, N., Rai, S., & Philipose, C. S. (2023). Gaussian Blurring Technique for Detecting and Classifying Acute Lymphoblastic Leukemia Cancer Cells from Microscopic Biopsy Images. Life, 13(2), 348. https://doi.org/10.3390/life13020348
[26] W.-H. Wang, D. C. Reutens, Z. Yang, G. Nguyen, V. Vegh, "Modified human contrast sensitivity function based phase mask for susceptibility-weighted imaging", NeuroImage: Clinical, vol. 4, pp. 765-778, 2014. https://doi.org/10.1016/j.nicl.2014.04.012.
[27] L. C. M. Liaw, S. C. Tan, P. Y. Goh, C. P. Lim, "A histogram SMOTE-based sampling algorithm with incremental learning for imbalanced data classification", Information Sciences, 2024. https://doi.org/10.1016/j.ins.2024.121193
[28] D. Wan, R. Lu, T. Xu, S. Shen, X. Lang, Z. Ren, "Random Interpolation Resize: A free image data augmentation method for object detection in industry", Expert Systems with Applications, vol. 228, 2023. https://doi.org/10.1016/j.eswa.2023.120355
[29] Karen Simonyan, Andrew Zisserman (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv:1409.1556v6. https://doi.org/10.48550/arXiv.1409.1556.
[30] Z. Cao, J. Huang, X. He, Z. Zong, "BND-VGG-19: A deep learning algorithm for COVID-19 identification utilizing X-ray images", Knowledge-Based Systems, vol. 258, 2022. https://doi.org/10.1016/j.knosys.2022.110040
[31] Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger (2016), "Densely connected convolutional networks". arXiv:1608.06993v5. http://arxiv.org/abs/1608.06993.
[32] Mingxing Tan, Quoc V. Le (2019). EfficientNet: Rethinking model scaling for convolutional neural networks. arXiv:1905.11946v5. http://arxiv.org/abs/1905.11946.
[33] M. Tan, Q. V. Le, "EfficientNet: Rethinking model scaling for convolutional neural networks", 2019. arXiv:1905.11946v5. http://arxiv.org/abs/1905.11946
[34] Chougrad, H., Zouaki, H., & Alheyane, O. (2020). Multi-label transfer learning for the early diagnosis of breast cancer. Neurocomputing, 392, 168–180. https://doi.org/10.1016/j.neucom.2019.01.112
[35] Wang, J., Yang, L., Huo, Z., He, W., & Luo, J. (2020). Multi-Label classification of Fundus images with EfficientNet. IEEE Access, 8, 212499–212508. https://doi.org/10.1109/access.2020.3040275