Volume 17 , Issue 1 , PP: 253-263, 2025 | Cite this article as | XML | Html | PDF | Full Length Article
M. E. ElAlami 1 , S. M. K. Tobar 2 , S. M. Khater 3 , Eman A. Esmaeil 4 *
Doi: https://doi.org/10.54216/FPA.170119
Machine learning (ML) is the most up-to-date approach for classifying music genres. Due to technological ML advancements, its technologies can help in music genre recognition best. In machine learning, effective fusion of different features could improve recognition performance. Hence, this paper presents a new robust method for Arabic music classification based on the fusion of different sets of features. Frequency-domain, time-domain, and cepstral domain features have been combined and compared with other state-of-the-art approaches. Four machine-learning models that categorize music into its appropriate genre have been created: support vector machines (SVM), K-nearest neighbors (KNN), naïve Bayes (NB), and random forest (RF) classifiers were utilized in a comparative analysis of other ML algorithms, and the accuracy of these models has been assessed and derives the appropriate conclusions. To assess the performance of our method, two various datasets are used: the collected dataset, namely Zekrayati, which was collected by authors in favor of this paper, and the global GTZAN dataset, which was used to compare with previous studies. The experimental findings indicated that the SVM exhibited a higher optimal accuracy of 99.2% and has proven that the fusion proposed features will help to classify music in different fields.
Machine learning (ML) , Musical classification , Music information retrieval (MIR)
[1] Ness, A. J., & Kolczynski, C. A. (2001). Sources of Lute Music. Oxford Music Online. doi:10.1093/gmo/9781561592630.article.26299
[2] Yu, X., Ma, N., Zheng, L., Wang, L., & Wang, K. (2023). Developments and applications of Artificial Intelligence in music education. Technologies, 11(2), 42. doi:10.3390/technologies11020042
[3] Chen, J., Ramanathan, L., & Alazab, M. (2021). Holistic Big Data Integrated Artificial Intelligent Modeling to improve privacy and security in data management of Smart Cities. Microprocessors and Microsystems, 81, 103722. doi:10.1016/j.micpro.2020.103722
[4] Lee, J., Nazki, H., Baek, J., Hong, Y., & Lee, M. (2020). Artificial intelligence approach for Tomato Detection and mass estimation in Precision Agriculture. Sustainability, 12(21), 9138. doi:10.3390/su12219138
[5] Chaudhury, M., Karami, A., & Ghazanfar, M. A. (2022). Large-scale music genre analysis and classification using Machine Learning with apache spark. Electronics, 11(16), 2567. doi:10.3390/electronics11162567
[6] Ng, W. W., Zeng, W., & Wang, T. (2020). Multi-level local feature coding fusion for music genre recognition. IEEE Access, 8, 152713–152727. doi:10.1109/access.2020.3017661
[7] Silva, D. F., Silva, M. V., Filho, R. S., & Silva, A. C. (2021). On the fusion of multiple audio representations for music genre classification. Anais Do XVIII Simpósio Brasileiro de Computação Musical (SBCM 2021), 37–44. doi:10.5753/sbcm.2021.19423
[8] Lekshmi, C. R., & Rajeev, R. (2023). Multiple predominant instruments recognition in polyphonic music using Spectro/Modgd-gram fusion. Circuits, Systems, and Signal Processing, 42(6), 3464–3484. doi:10.1007/s00034-022-02278-y
[9] Sharma, D., Taran, S., & Pandey, A. (2023). A fusion way of feature extraction for automatic categorization of music genres. Multimedia Tools and Applications, 82(16), 25015–25038. doi:10.1007/s11042-023-14371-8
[10] Zhao, Z. qi. (2019). Music classification model based on feature fusion. 2019 IEEE/ACIS 18th International Conference on Computer and Information Science (ICIS). doi:10.1109/icis46139.2019.8940205
[11] Prabavathy, S., Rathikarani, V., & Dhanalakshmi, P. (2020). Classification of musical instruments using SVM and Knn. International Journal of Innovative Technology and Exploring Engineering, 9(7), 1186–1190. doi:10.35940/ijitee.g5836.059720
[12] Prabavathy, S., Rathikarani, V., & Dhanalakshmi, P. (2021). Musical Instrument Sound classification using GoogleNet with SVM and KNN Model. Lecture Notes in Networks and Systems, 300, 230–240. doi:10.1007/978-3-030-84760-9_21
[13] Chaudhury, M., Karami, A., & Ghazanfar, M. A. (2022). Large-scale music genre analysis and classification using Machine Learning with apache spark. Electronics, 11(16), 2567. doi:10.3390/electronics11162567
[14] Deng, G., & Ko, Y. C. (2022). Active learning music genre classification based on support vector machine. Advances in Multimedia, 2022, 1–11. doi:10.1155/2022/4705272
[15] Zhang, W. (2022). Music genre classification based on Deep Learning. Mobile Information Systems, 2022, 1–11. doi:10.1155/2022/2376888
[16] syah, A., Yuliadi, B., & Sahara, R. (2018). Music genre classification using naïve Bayes algorithm. International Journal of Computer Trends and Technology, 62(1), 50–57. doi:10.14445/22312803/ijctt-v62p107
[17] Zhang, J. (2021). Music feature extraction and classification algorithm based on Deep Learning. Scientific Programming, 2021, 1–9. doi:10.1155/2021/1651560
[18] Atahan, Y., Elbir, A., Enes Keskin, A., Kiraz, O., Kirval, B., & Aydin, N. (2021). Music genre classification using acoustic features and Autoencoders. 2021 Innovations in Intelligent Systems and Applications Conference (ASYU). doi:10.1109/asyu52992.2021.9598979
[19] Prabhakar, S. K., & Lee, S.-W. (2023). Holistic approaches to music genre classification using efficient transfer and deep learning techniques. Expert Systems with Applications, 211, 118636. doi:10.1016/j.eswa.2022.118636
[20] Bhattacharjee, M., Prasanna, S. R., & Guha, P. (2020). Speech/music classification using features from Spectral Peaks. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 28, 1549–1559. doi:10.1109/taslp.2020.2993152
[21] Zhang, K. (2021). Music style classification algorithm based on music feature extraction and Deep Neural Network. Wireless Communications and Mobile Computing, 2021(1). doi:10.1155/2021/9298654
[22] Khasgiwala, Y., & Tailor, J. (2021). Vision transformer for music genre classification using Mel-frequency cepstrum coefficient. 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON). doi:10.1109/gucon50781.2021.9573568
[23] Sul, A., Sarda, H., Billa, A., & Mishra, T. K. (2023). LPCC based music Genrefication using hybrid computational model. 2023 7th International Conference On Computing, Communication, Control And Automation (ICCUBEA). doi:10.1109/iccubea58933.2023.10392080
[24] S. Amer, R. (2020). Detection and Classification of Alcoholics Using Electroencephalogram Signal and Support Vector Machine. Fusion: Practice and Applications, 2(1), 14-21. DOI: https://doi.org/10.54216/FPA.020103
[25] Chen, L., Wang, C., Chen, J., Xiang, Z., & Hu, X. (2021). Voice disorder identification by using Hilbert-Huang transform (HHT) and k nearest neighbor (KNN). Journal of Voice, 35(6). doi:10.1016/j.jvoice.2020.03.009
[26] Wankhede, D. S., S., G. V., Manikjade, A., Meher, N., Atkale, T., Ghule, A., & Gujar, D. (2023). Analyzing the performance of naive Bayes, logistic regression, SVM and random forest for identifying hate speech from Twitter Social Media. 2023 7th International Conference On Computing, Communication, Control And Automation (ICCUBEA). doi:10.1109/iccubea58933.2023.10392242
[27] Raghav, A. Gupta, M. (2020). Ensemble Learning for Facial Expression Recognition. Fusion: Practice and Applications, 2( 1), 31-41. DOI: https://doi.org/10.54216/FPA.020104
[28] Sharma, N. M., Kumar, V., Mahapatra, P. K., & Gandhi, V. (2023). Comparative analysis of various feature extraction techniques for classification of speech Disfluencies. Speech Communication, 150, 23–31. doi:10.1016/j.specom.2023.04.003
[29] Tzanetakis, G., & Cook, P. (2002). Musical genre classification of Audio Signals. IEEE Transactions on Speech and Audio Processing, 10(5), 293–302. doi:10.1109/tsa.2002.800560
[30] Holzapfel, A., & Stylianou, Y. (2008). Musical genre classification using nonnegative matrix factorization-based features. IEEE Transactions on Audio, Speech, and Language Processing, 16(2), 424–434. doi:10.1109/tasl.2007.909434
[31] Martins de Sousa, J., Torres Pereira, E., & Ribeiro Veloso, L. (2016). A robust music genre classification approach for Global and Regional Music Datasets Evaluation. 2016 IEEE International Conference on Digital Signal Processing (DSP). doi:10.1109/icdsp.2016.7868526
[32] Kobayashi, T., Kubota, A., & Suzuki, Y. (2018). Audio feature extraction based on sub-band signal correlations for music genre classification. 2018 IEEE International Symposium on Multimedia (ISM). doi:10.1109/ism.2018.00-15
[33] Salamon, J., Rocha, B., & Gomez, E. (2012). Musical genre classification using melody features extracted from Polyphonic Music Signals. 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). doi:10.1109/icassp.2012.6287822