Fusion: Practice and Applications

Journal DOI

https://doi.org/10.54216/FPA

Submit Your Paper

2692-4048ISSN (Online) 2770-0070ISSN (Print)

Volume 17 , Issue 1 , PP: 196-208, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Enhancing Stock Price Prediction Using Mutual Information, PCA, and LSTM: A Deep Learning Approach

Zinah Kareem Mansoor 1 * , Ali Yakoob Al-Sultan 2

  • 1 Department of Computer, College of Science for Women, University of Babylon, Babylon, Iraq - (scw734.zynh.kareem@student.uobablyon.edu.iq)
  • 2 Department of Computer, College of Science for Women, University of Babylon, Babylon, Iraq - (ali.alsultan@uobabylon.edu.iq)
  • Doi: https://doi.org/10.54216/FPA.170114

    Received: November 25, 2023 Revised: March 17, 2024 Accepted: July 18, 2024
    Abstract

    The stock price exhibits quick and extremely nonlinear fluctuations in the financial market. A prominent worry among scholars and investors is the correct prediction of short-term stock prices and the corresponding upward and downward trends. Financial organizations have successfully incorporated machine learning and deep learning techniques to anticipate time series data accurately. Nevertheless, the precision of these models' predictions still needs improvement. Most current studies employ single prediction algorithms that cannot overcome intrinsic limitations. This paper proposes a methodology that utilizes the MUTUAL, principal component analysis (PCA), and Long Short-Term Memory (LSTM) model to accurately simulate and predict the variations in stock prices. The technology is utilized for the three global stock market datasets: TSLA, S&P500, and NASDAQ. The highest level of improvement achieved is a correlation of 99%. Furthermore, there is a reduction in error for the metrics MSE, MAPE, and RMSE, with improvements of 0.0001, 0.009, and 0.01 correspondingly.

    Keywords :

    PCA , LSTM , Deep learning , Stock Market Prediction, Deep Learning, Neural Networks, Sentiment Analysis, Financial Markets, Trading Strategies

    References

    [1]     M. Vijh, D. Chandola, V. A. Tikkiwal, and A. Kumar, “ScienceDirect Stock Closing Closing Price Price Prediction Prediction using using Machine Machine Learning Learning Techniques Techniques,” Procedia Comput. Sci., vol. 167, no. 2019, pp. 599–606, 2020, doi: 10.1016/j.procs.2020.03.326.

    [2]     D. K. Padhi, N. Padhy, A. K. Bhoi, J. Shafi, and S. H. Yesuf, “An Intelligent Fusion Model with Portfolio Selection and Machine Learning for Stock Market Prediction,” Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/7588303.

    [3]     P. Lee, Z. Huang, and Y. Tang, “Trend Prediction Model of Asian Stock Market Volatility Dynamic Relationship Based on Machine Learning,” Secur. Commun. Networks, vol. 2022, 2022, doi: 10.1155/2022/5972698.

    [4]     X. Zhou, Z. Pan, G. Hu, S. Tang, and C. Zhao, “Stock Market Prediction on High-Frequency Data Using Generative Adversarial Nets,” Math. Probl. Eng., vol. 2018, 2018, doi: 10.1155/2018/4907423.

    [5]     M. C. Wu, S. Y. Lin, and C. H. Lin, “An effective application of decision tree to stock trading,” Expert Syst. Appl., vol. 31, no. 2, pp. 270–274, 2006, doi: 10.1016/j.eswa.2005.09.026.

    [6]     Y. Lin, S. Liu, H. Yang, and H. Wu, “Stock Trend Prediction Using Candlestick Charting and Ensemble Machine Learning Techniques with a Novelty Feature Engineering Scheme,” IEEE Access, vol. 9, pp. 101433–101446, 2021, doi: 10.1109/ACCESS.2021.3096825.

    [7]     C. Lohrmann and P. Luukka, “Classification of intraday S&P500 returns with a Random Forest,” Int. J. Forecast., vol. 35, no. 1, pp. 390–407, 2019, doi: 10.1016/j.ijforecast.2018.08.004.

    [8]     A. Sherstinsky, “Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network,” Phys. D Nonlinear Phenom., vol. 404, no. March, pp. 1–43, 2020, doi: 10.1016/j.physd.2019.132306.

    [9]     H. Boubaker, B. Saidane, and M. Ben Saad Zorgati, “Modelling the dynamics of stock market in the gulf cooperation council countries: evidence on persistence to shocks,” Financ. Innov., vol. 8, no. 1, 2022, doi: 10.1186/s40854-022-00348-3.

    [10]   J. Cao, “Stock price forecasting model based on modified convolution neural network and financial time series analysis,” no. November 2018, pp. 1–13, 2019, doi: 10.1002/dac.3987.

    [11]   M. Göçken, M. Özçalıcı, A. Boru, and A. T. Dosdoğru, “Stock price prediction using hybrid soft computing models incorporating parameter tuning and input variable selection,” Neural Comput. Appl., vol. 31, no. 2, pp. 577–592, 2019, doi: 10.1007/s00521-017-3089-2.

    [12]   M. Iyyappan, S. Ahmad, S. Jha, A. Alam, M. Yaseen, and H. A. M. Abdeljaber, “A Novel AI-Based Stock Market Prediction Using Machine Learning Algorithm,” Sci. Program., vol. 2022, 2022, doi: 10.1155/2022/4808088.

    [13]   O. Kelany, S. Aly, and M. A. Ismail, “Deep Learning Model for Financial Time Series Prediction,” Proc. 2020 14th Int. Conf. Innov. Inf. Technol. IIT 2020, pp. 120–125, 2020, doi: 10.1109/IIT50501.2020.9299063.

    [14]   M. Mazed, “Stock Price Prediction Using Time Series Data,” Brac Univ., vol. 1(1), no. August, pp. 1–51, 2019.

    [15]   K. Patel and S. Saket, “Analysis of Stock Market Forecasting using Machine Learning Mechanism,” JASC J. Appl. Sci. Comput., vol. V, no. 112, pp. 112–119, 2018.

    [16]   Y. Wen, P. Lin, and X. Nie, “Research of stock price prediction based on PCA-LSTM model,” IOP Conf. Ser. Mater. Sci. Eng., vol. 790, no. 1, 2020, doi: 10.1088/1757-899X/790/1/012109.

    [17]   G. Bathla, “Stock price prediction using LSTM and SVR,” PDGC 2020 - 2020 6th Int. Conf. Parallel, Distrib. Grid Comput., pp. 211–214, 2020, doi: 10.1109/PDGC50313.2020.9315800.

    [18]   U. Gurav and N. Sidnal, “Adaptive Stock Forecasting Model using Modified Backpropagation Neural Network (MBNN),” Proc. Int. Conf. Comput. Tech. Electron. Mech. Syst. CTEMS 2018, pp. 380–385, 2018, doi: 10.1109/CTEMS.2018.8769290.

    [19]   D. Song, A. M. Chung Baek, and N. Kim, “Forecasting Stock Market Indices Using Padding-Based Fourier Transform Denoising and Time Series Deep Learning Models,” IEEE Access, vol. 9, pp. 83786–83796, 2021, doi: 10.1109/ACCESS.2021.3086537.

    [20]   S. Mohan, S. Mullapudi, S. Sammeta, P. Vijayvergia, and D. C. Anastasiu, “Stock price prediction using news sentiment analysis,” Proc. - 5th IEEE Int. Conf. Big Data Serv. Appl. BigDataService 2019, Work. Big Data Water Resour. Environ. Hydraul. Eng. Work. Medical, Heal. Using Big Data Technol., pp. 205–208, 2019, doi: 10.1109/BigDataService.2019.00035.

    [21]   S. E. Arefin, “Second Hand Price Prediction for Tesla Vehicles,” 2021, [Online]. Available: http://arxiv.org/abs/2101.03788

    [22]   M. Kijewski and R. Ślepaczuk, “Predicting Prices of S&P500 Index Using Classical Methods and Recurrent Neural Networks,” vol. 2020, no. 27, 2020.

    [23]   T. H. H. Aldhyani and A. Alzahrani, “Framework for Predicting and Modeling Stock Market Prices Based on Deep Learning Algorithms,” Electron., vol. 11, no. 19, 2022, doi: 10.3390/electronics11193149.

    [24]   A. H. Khan et al., “A performance comparison of machine learning models for stock market prediction with novel investment strategy,” PLoS One, vol. 18, no. 9 September, pp. 1–19, 2023, doi: 10.1371/journal.pone.0286362.

    [25]   G. Edman and M. Weishaupt, “Predicting Tesla Stock Return Using Twitter Data,” no. May 2020, 2020.

    [26]   S. Lundgren, “1. Introduction 11,” Fight Against Idols, 2016, doi: 10.3726/978-3-653-01927-8/2.

    [27]   M. Biswas, A. Shome, M. A. Islam, A. J. Nova, and S. Ahmed, “Predicting stock market price: A logical strategy using deep learning,” ISCAIE 2021 - IEEE 11th Symp. Comput. Appl. Ind. Electron., pp. 218–223, 2021, doi: 10.1109/ISCAIE51753.2021.9431817.

    [28]   O. Rivera, “Enhancing Influencer Marketing Strategies through Machine Learning: Predictive Analysis of Influencer-Generated Interactions,” vol. TRITA-EECS, no. 2023:0000. KTH Royal Institute of Technology, 2023. [Online]. Available: https://www.diva-portal.org/smash/record.jsf?pid=diva2:1783645%0Ahttps://www.diva-portal.org/smash/get/diva2:1783645/FULLTEXT01.pdf

    [29]   Z. Xie and Y. Wang, “Exploration of Stock Portfolio Investment Construction Using Deep Learning Neural Network,” Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/7957097.

    [30]   K. J. Kim, “Financial time series forecasting using support vector machines,” Neurocomputing, vol. 55, no. 1–2, pp. 307–319, 2003, doi: 10.1016/S0925-2312(03)00372-2.

    [31]   J. Ayala, M. García-Torres, J. L. V. Noguera, F. Gómez-Vela, and F. Divina, “Technical analysis strategy optimization using a machine learning approach in stock market indices[Formula presented],” Knowledge-Based Syst., vol. 225, 2021, doi: 10.1016/j.knosys.2021.107119.

    [32]   H. Chung and K. shik Shin, “Genetic algorithm-optimized multi-channel convolutional neural network for stock market prediction,” Neural Comput. Appl., vol. 32, no. 12, pp. 7897–7914, 2020, doi: 10.1007/s00521-019-04236-3.

    [33]   E. El., “A New Particle Swarm Optimization Based Stock Market Prediction Technique,” Int. J. Adv. Comput. Sci. Appl., vol. 7, no. 4, pp. 322–327, 2016, doi: 10.14569/ijacsa.2016.070442.

    [34]   H. Wu, A. Gattami, and M. Flierl, “Conditional mutual information-based contrastive loss for financial time series forecasting,” ICAIF 2020 - 1st ACM Int. Conf. AI Financ., 2020, doi: 10.1145/3383455.3422550.

    [35]   L. Hang, D. Liu, and F. Xie, “A Hybrid Model Using PCA and BP Neural Network for Time Series Prediction in Chinese Stock Market with TOPSIS Analysis,” Sci. Program., vol. 2023, 2023, doi: 10.1155/2023/9963940.

    [36]   H. Chung and K. Shin, “Genetic algorithm-optimized multi-channel convolutional neural network for stock market prediction,” Neural Comput. Appl., vol. 32, pp. 7897–7914, 2020.

    [37]   T. J. Prins, “UCLA UCLA Electronic Theses and Dissertations Title,” 2019, [Online]. Available: https://escholarship.org/uc/item/0th2s0ss

    [38]   H. Kiran, S. Surayagari, A. Ben-Hur, and C. Stein, “THESIS STOCK MARKET PREDICTIONS USING MACHINE LEARNING Submitted by,” 2021.

    [39]   P. Chhajer, M. Shah, and A. Kshirsagar, “The applications of artificial neural networks, support vector machines, and long–short term memory for stock market prediction,” Decis. Anal. J., vol. 2, no. November 2021, p. 100015, 2022, doi: 10.1016/j.dajour.2021.100015.

    [40]   S. Albahli, A. Awan, T. Nazir, A. Irtaza, A. Alkhalifah, and W. Albattah, “A deep learning method DCWR with HANet for stock market prediction using news articles,” Complex Intell. Syst., vol. 8, no. 3, pp. 2471–2487, 2022, doi: 10.1007/s40747-022-00658-0.

    Cite This Article As :
    Kareem, Zinah. , Yakoob, Ali. Enhancing Stock Price Prediction Using Mutual Information, PCA, and LSTM: A Deep Learning Approach. Fusion: Practice and Applications, vol. , no. , 2025, pp. 196-208. DOI: https://doi.org/10.54216/FPA.170114
    Kareem, Z. Yakoob, A. (2025). Enhancing Stock Price Prediction Using Mutual Information, PCA, and LSTM: A Deep Learning Approach. Fusion: Practice and Applications, (), 196-208. DOI: https://doi.org/10.54216/FPA.170114
    Kareem, Zinah. Yakoob, Ali. Enhancing Stock Price Prediction Using Mutual Information, PCA, and LSTM: A Deep Learning Approach. Fusion: Practice and Applications , no. (2025): 196-208. DOI: https://doi.org/10.54216/FPA.170114
    Kareem, Z. , Yakoob, A. (2025) . Enhancing Stock Price Prediction Using Mutual Information, PCA, and LSTM: A Deep Learning Approach. Fusion: Practice and Applications , () , 196-208 . DOI: https://doi.org/10.54216/FPA.170114
    Kareem Z. , Yakoob A. [2025]. Enhancing Stock Price Prediction Using Mutual Information, PCA, and LSTM: A Deep Learning Approach. Fusion: Practice and Applications. (): 196-208. DOI: https://doi.org/10.54216/FPA.170114
    Kareem, Z. Yakoob, A. "Enhancing Stock Price Prediction Using Mutual Information, PCA, and LSTM: A Deep Learning Approach," Fusion: Practice and Applications, vol. , no. , pp. 196-208, 2025. DOI: https://doi.org/10.54216/FPA.170114