Fusion: Practice and Applications

Journal DOI

https://doi.org/10.54216/FPA

Submit Your Paper

2692-4048ISSN (Online) 2770-0070ISSN (Print)

Volume 17 , Issue 1 , PP: 15-25, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Screening Epileptic Seizures in EEGs Using Interictal Epileptiform Discharge Waveforms and Convolutional Neural Networks

Mahy E. Elemam 1 * , A. F. Elgamal 2 , I. Elmenshawi 3 , Hanan E. Abdelkader 4

  • 1 ComputerScienceDepartment, Faculty of Specific Education, Mansoura, Egypt - (mahy-ibrahim@ mans.edu.eg)
  • 2 ComputerScienceDepartment, Faculty of Specific Education, Mansoura, Egypt - (amany_elgamal@mans.edu.eg)
  • 3 NeurologyDepartment, Faculty of medicine, Mansoura, Egypt - (menshawy@mans.edu.eg)
  • 4 ComputerScienceDepartment, Faculty of Specific Education, Mansoura, Egypt - (hanan277@mans.edu.eg)
  • Doi: https://doi.org/10.54216/FPA.170102

    Received: November 05, 2023 Revised: February 27, 2024 Accepted: June 28, 2024
    Abstract

    The integration of Artificial Intelligence (AI) within the Medical Internet of Things (MIoT) is advancing swiftly, leading to significant developments in the detection of illnesses like epilepsy by analyzing Interictal Epileptiform Discharges (IED) in electroencephalograms (EEG).The availability of EEG data has facilitated the creation of innovative applications, including seizure detection. While neurologists have traditionally relied on EEG data analysis to identify epileptic seizures, the manual evaluation of EEG brain waves is a laborious and complex process that places significant stress on specialists. This paper presents a simple Convolutional Neural Network (CNN) method for the automated detection of IEDs based on EEG waveforms. This approach helps reduce the burden on epilepsy patients by forecasting seizures and enabling timely interventions. It also eases the workload for neurologists and less experienced specialists, thereby accelerating the diagnosis process. The proposed method was implemented by utilizing a series of images that depicted the magnitude of the EEG signal across each sensor. The study divided participants into two groups: (A) healthy individuals and (B) individuals with epilepsy. The results demonstrated an accuracy of up to 96.4% compared to human expert diagnoses, displaying the method's effectiveness and practicality in detecting seizure occurrences in EEG data.

    Keywords :

    Interictal epileptiform discharge , Electroencephalogram , Convolutional neural network , Epilepsy , Seizure detection

    References

    [1]             Sharmila, Aman Raj, Pandey Shashank,and  P. Mahalakshmi ," Epileptic seizure detection using DWT-based approximate entropy, Shannon entropy and support vector machine: a case study. " ,J. Med. Eng. Technol, Vol.42,PP. 1–8,2018.

    [2]             Rodrigo Ramele,Ana Julia Villar and Juan Miguel Santos , " EEG Waveform Analysis of P300 ERP with Applications to Brain Computer Interfaces.", Brain Sci., Vol.8 ,2018 .

    [3]             Wei Xiaoyan, zhen zhang and Yi Zhou," Epileptic seizure detection from multivariate sequential signals using Multidimensional convolution network",Reasearc Square,doi.10.21203,2022.

    [4]             Kislay RAJ , Aditya SINGH, Abhishek MANDAL , Teerath KUMAR ,and  Arunabha M. ROY," Understanding EEG signals for subject-wise Definition of Armoni Activities ", arXiv preprint arXiv:2301.00948 ,Vol.3,2023.

    [5]             Enes Akyuz , Yam Nath Paudel , Ayse Kristina Polat , Huseyin Emre Dundar ,and Efthalia Angelopoulou , "Enlightening the neuroprotective effect of quercetin in epilepsy: From mechanism to therapeutic opportunities." Epilepsy Behav. 115, 107701. doi:10.1016/j.yebeh.2020.107701,2021.

    [6]             Ling Zhang, Xiaolu Wang, Jun Jiang, Naian Xiao, Jiayang Guo, Kailong Zhuang,et.al ," Automatic interictal epileptiform discharge (IED) detection based on convolutional neural network (CNN)", Frontiers in Molecular Biosciences, DOI 10.3389/fmolb.2023.1146606,2023.

    [7]             Elliot H Smith , Jyun-You LiouEdward M Merricks , Tyler Davis , Kyle Thomson , Bradley Greger ,et.al," Human interictal epileptiform discharges are bidirectional traveling waves echoing ictal discharges", eLife;11:e73541,2022.

    [8]             Catarina da Silva Lourenço,   Marleen C. Tjepkema-Cloostermans, and Michel J. A. M. van Putten," Not one size fits all: influence of EEG type when training a deep neural network for interictal epileptiform discharge detection", bioRxiv preprint doi: 10.1101/2023.03.02.530752,2023.

    [9]             Karin Westin , Gerald Cooray , Sándor Beniczky ,and  Daniel Lundqvist," Interictal epileptiform discharges in focal epilepsy are preceded by increase in low-frequency oscillations". Clin. Neurophysiol. 136, 191–205. doi:10.1016/j.clinph.2022.02.003,2022.

    [10]          Shamriz NAHZAT,and Mete Yaganoglu,"Classification of Epileptic Seizure Dataset Using Different Machine Learning Algorithms and PCA Feature Reduction Technique",   Journal of Investigations on Engineering & Technology Volume 4, Issue 2,2021.

    [11]          Sani Saminu, Guizhi Xu, Shuai Zhang, Isselmou Ab El Kader, Hajara Abdulkarim Aliyu, Adamu Halilu Jabire,et.al," Applications of Artificial Intelligence in Automatic Detection of Epileptic Seizures Using EEG Signals: A Review",Artificial Intelligence and Application , Vol. 1,pp. 11–25,2022.

    [12]          Sanguk Ryu, and Inwhee Joe," A Hybrid DenseNet-LSTM Model for Epileptic Seizure Prediction ", Appl. Sci.,Vol. 11, 7661,2021.

    [13]          Catarina da Silva Lourenço , Marleen C. Tjepkema-Cloostermans ,and  Michel J.A.M. van Putten , "Machine learning for detection of interictal epileptiform discharges". Clin. Neurophysiol. 132, 1433–1443. doi:10.1016/j.clinph.2021.02.403,2021.

    [14]          Li Zhengdao, Kai Hwang, Keqin Li,and Jie Wu," Graph‑generative neural network for EEG‑based epileptic seizure detection via discovery of dynamic brain functional connectivity",Scientifc Reports ,Vol. 12:18998,2023.

    [15]          Mohammad Khubeb SiddiquiRuben Morales-MenendezXiaodi Huang, and Nasir Hussain," A review of epileptic seizure detection using machine learning classifiers" , Brain Informatics,Vol.7,No.5,2020.

    [16]          Sani Saminu, Guizhi Xu, Zhang ShuaiIsselmou Abd El KaderAdamu Halilu JabireYusuf Kola Ahmed,et.al, "Epileptic seizure classifications using empirical mode decomposition and its derivative" , BioMed Eng,Vol. 19, No.10,2020.

    [17]          Athar A. Ein Shoka, Mohamed M. Dessouky, Ayman El-Sayed,and Ezz El-Din Hemdan," An efficient CNN based epileptic seizures detection framework using encrypted EEG signals for secure telemedicine applications",Alexandria Engineering Journal ,Vol. 65, PP.399–412,2023.

    [18]          Neethu Sreenivasan , Gaetano D. Gargiulo, Upul Gunawardana  , Ganesh Naik,and Armin Nikpour," Seizure Detection: A Low Computational Effective Approachwithout Classification Methods", Sensors, 22, 8444,2022.

    [19]          Syed Yaseen Shah , Hadi Larijani, Ryan M. Gibson  and Dimitrios ," Random Neural Network Based Epileptic Seizure Episode Detection Exploiting Electroencephalogram Signals", Sensors, 22, 2466,2022.

    [20]          Fatima Hassan, Fawad Hussain,and  Saeed Mian Qaisar," Epileptic Seizure Detection Using a Hybrid 1D CNN-Machine Learning Approach from EEG Data", Journal of Healthcare Engineering, Article ID 9579422, 16 pages,2022.

    [21]          Anwer Mustafa Hilal ,Amani Abdulrahman Albraikan  , Sami Dhahbi, Mohamed K. Nour, Abdullah Mohamed,et.al ," Intelligent Epileptic Seizure Detection and Classification Mode Using Optimal Deep Canonical Sparse Autoencoder",Biology, 11, 1220,2022.

    [22]          Afef Saidi, Slim Ben Othman, and Slim Ben Saoud," A novel epileptic seizure detection system using scalp EEG signals based on hybrid CNN-SVM classifier",ResearchGate, DOI: 10.1109/ISIEA51897.2021.9510002,2021.

    [23]          Rabel GuharoyNanda Dulal Jana, and Suparna Biswas," An Efficient Epileptic Seizure Detection Technique using Discrete Wavelet Transform and Machine Learning Classifiers", Electrical Engineering and Systems Science, doi.org/10.48550/arXiv.2109.13811,2021.

    [24]          Deepa B and Ramesh K ," Epileptic seizure detection using deep learning through min max scaler normalization". International Journal of Health Sciences, 6(S1), 10981–10996,2022

    [25]          Bassem Bouaziz, Lotfi ChaariHadj Batatia ,and Antonio Quintero-Rincón, " Epileptic Seizure Detection Using a Convolutional Neural Network", Research Gate, DOI: 10.1007/978-3-030-11800-6_9,2019.

    [26]          Jonghwa Yim and Kyung-Ah Sohn," Enhancing the Performance of Convolutional Neural Networks on Quality Degraded Datasets",National Research Foundation of Korea (NRF) funded by the Ministry of Education, DOI: R1D1A1B03933875,2017.

    [27]          Caixia Liu and Li Zhang," A Novel Denoising Algorithm Based on Wavelet and Non-Local Moment Mean Filtering", Electronics, Vol.12, ,Doi.org/10.3390/ electronics12061461,2023.

    [28]          Asifullah Khan , Anabia Sohail, Umme Zahoora , and Aqsa Saeed Qureshi, "A survey of the recent architectures of deep convolutional neural networks ", Artif. Intell. Rev., Vol.53, No. 8, doi.org/10.1007/s10462-020-09825-6,2020.

    [29]          Tianqi WangChao-Kai WenHanqing WangFeifei GaoTao Jiang, and Shi Jin,"Deep Learning for Wireless Physical Layer: Opportunities and Challenges ", China Commun.,Vol. 14 ,PP. 92–111,  doi.org/10.1109/CC.2017.8233654,2017.

    [30]          Guifang Lin and  Wei Shen," Research on convolutional neural network based on improved Relu piecewise activation function",Procedia Computer Science ,Vol.131 ,pp.977–984,2018.

    [31]          Gustineli, Murilo. , "A survey on recently proposed activation functions for Deep Learning",. 10.31224/2245,2022.

    [32]          Elaina Chai, Mert Pilanci,and Boris Murmann," Separating the Effects of Batch Normalization in CNN Training Speed and Stability Using Classical Adaptive Filter Theory",IEEE Xplore , pp. 1214-1221,2020.

    [33]          Susanna LangeKyle Helfrich,and Qiang Ye,"Batch Normalization Preconditioning for Neural Network Training."  Spring Central Sectional Meeting. AMS,2022.

    [34]          Madhurima Tummala," Image Classification Using Convolutional Neural Networks", International Journal of Scientific andResearchPublications 9,No.8,DOI:10.29322/IJSRP.9.08.2019,2019

    [35]          Rikiya Yamashita,  Mizuho NishioRichard Kinh Gian Do, and Kaori Togashi ," Convolutional neural networks: an overview and application in radiology", Insights Imaging ,PP. 9:611–629,2018.

    [36]          Mariam K. Alharthi, Kawthar M. Moria,Daniyal M. Alghazzawi,and Haythum O. Tayeb," Epileptic Disorder Detection of Seizures Using EEG Signals",Sensors ,Vol. 22, ,doi.org/10.3390/s22176592,2022.

    [37]      Sachin Goel, Rajeev Agarwal,and R.P. Bharti ," Automated Detection of Epileptic EEG Signals using Recurrence Plots based Feature Extraction with TransferLearning",Researchsquare,doi.org/10.21203/rs.3.rs-2046441/v1,2022

    Cite This Article As :
    E., Mahy. , F., A.. , Elmenshawi, I.. , E., Hanan. Screening Epileptic Seizures in EEGs Using Interictal Epileptiform Discharge Waveforms and Convolutional Neural Networks. Fusion: Practice and Applications, vol. , no. , 2025, pp. 15-25. DOI: https://doi.org/10.54216/FPA.170102
    E., M. F., A. Elmenshawi, I. E., H. (2025). Screening Epileptic Seizures in EEGs Using Interictal Epileptiform Discharge Waveforms and Convolutional Neural Networks. Fusion: Practice and Applications, (), 15-25. DOI: https://doi.org/10.54216/FPA.170102
    E., Mahy. F., A.. Elmenshawi, I.. E., Hanan. Screening Epileptic Seizures in EEGs Using Interictal Epileptiform Discharge Waveforms and Convolutional Neural Networks. Fusion: Practice and Applications , no. (2025): 15-25. DOI: https://doi.org/10.54216/FPA.170102
    E., M. , F., A. , Elmenshawi, I. , E., H. (2025) . Screening Epileptic Seizures in EEGs Using Interictal Epileptiform Discharge Waveforms and Convolutional Neural Networks. Fusion: Practice and Applications , () , 15-25 . DOI: https://doi.org/10.54216/FPA.170102
    E. M. , F. A. , Elmenshawi I. , E. H. [2025]. Screening Epileptic Seizures in EEGs Using Interictal Epileptiform Discharge Waveforms and Convolutional Neural Networks. Fusion: Practice and Applications. (): 15-25. DOI: https://doi.org/10.54216/FPA.170102
    E., M. F., A. Elmenshawi, I. E., H. "Screening Epileptic Seizures in EEGs Using Interictal Epileptiform Discharge Waveforms and Convolutional Neural Networks," Fusion: Practice and Applications, vol. , no. , pp. 15-25, 2025. DOI: https://doi.org/10.54216/FPA.170102