Fusion: Practice and Applications

Journal DOI

https://doi.org/10.54216/FPA

Submit Your Paper

2692-4048ISSN (Online) 2770-0070ISSN (Print)

Volume 16 , Issue 2 , PP: 63-85, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Employing Deep Learning Techniques for the Identification and Assessment of Skin Cancer

Sowmya Koneru 1 , Pappula Madhavi 2 , Krishna Kishore Thota 3 , Janjhyam V. Naga Ramesh 4 , Venkata Nagaraju Thatha 5 , S. Phani Praveen 6 *

  • 1 Department of CSE, Dhanekula Institute of Engineering &Technology, Vijayawada, A.P, India - (konerusowmya@gmail.com)
  • 2 Department of Artificial Intelligence and Data Science, Lakireddy Bali Reddy College of Engineering, Mylavaram, A.P, India - (pappulamadhavi06@gmail.com)
  • 3 Department of CSE (Honors), Koneru Lakshmaiah Education Foundation (Deemed to be University), Vaddeswaram, A.P, India - ( tkrishnakishore@kluniversity.in)
  • 4 Adjunct Professor, Department of CSE, Graphic Era Hill University, Dehradun , India and Graphic Era Deemed to be University , Dehradun,248002, India - (jvnramesh@gmail.com)
  • 5 Department of Information Technology, MLR Institute of Technology, Hyderabad, India - (nagaraju.thatha@gmail.com)
  • 6 Department of CSE, PVP Siddhartha Institute of Technology, Vijayawada, A.P, India - (phani.0713@gmail.com)
  • Doi: https://doi.org/10.54216/FPA.160205

    Received: July 16, 2023 Revised: November 18, 2023 Accepted: May 27, 2024
    Abstract

    These days, skin cancer is a prominent cause of death for people. Skin cancer is the name given to the abnormal development of skin cells that are exposed to the sun. These skin cells can develop anywhere on the human body. The majority of malignancies are treatable in the early stages. Thus, early detection of skin cancer is anticipated in order to preserve patient life. With cutting edge innovation, it is possible to detect skin cancer early on. Here, we provide a novel framework for the recognition of dermo duplication pictures that makes use of a neighbouring descriptor encoding method and deep learning technique. Specifically, the deep representations of a rescaled dermo duplication image that were initially removed through training an extraordinarily deep residual neural network on a big dataset of normal images. Subsequently, the neighbourhood deep descriptors are obtained by request-less visual measurement highlights, which rely on fisher vector encoding to create an international image representation. Lastly, a convolution neural network (CNN) was utilised to orchestrate melanoma images employing the Fisher vector encoded depictions. This proposed technique can give more discriminative parts to oversee huge contrasts inside melanoma classes and little varieties among melanoma and non-melanoma classes with least readiness information.

    Keywords :

    Neural networks , skin cancer , deep learning methodologies , Machine-driven learning , Identification , Assessment.

    References

    [1]    Baratloo, M. Hosseini, A. Negida, G. El Ashal, Part 1: Simple Definition and Calculation of Accuracy, Sensitivity and Specificity. (Emergency, Tehran, Iran, 2015).

    [2]    A. Esteva et al., Dermatologist-level classification of skin cancer with deep neural networks. Nature (2017)

    [3]    A.G. Howard et al., MobileNets. arXivPrepr. arXiv1704.04861 (2017)

    [4]    Abunadi, I., & Senan, E. M. (2021). Deep learning and machine learning techniques of diagnosis dermoscopy images for early detection of skin diseases. Electronics, 10(24), 3158.

    [5]    Mazhar, T., Haq, I., Ditta, A., Mohsan, S. A. H., Rehman, F., Zafar, I., ... & Goh, L. P. W. (2023, February). The role of machine learning and deep learning approaches for the detection of skin cancer. In Healthcare (Vol. 11, No. 3, p. 415). MDPI.

    [6]    Gouda, W., Sama, N. U., Al-Waakid, G., Humayun, M., &Jhanjhi, N. Z. (2022, June). Detection of skin cancer based on skin lesion images using deep learning. In Healthcare (Vol. 10, No. 7, p. 1183). MDPI.

    [7]    Hossin, M. A., Rupom, F. F., Mahi, H. R., Sarker, A., Ahsan, F., &Warech, S. (2020, October). Melanoma skin cancer detection using deep learning and advanced regularizer. In 2020 International Conference on Advanced Computer Science and Information Systems (ICACSIS) (pp. 89-94). IEEE.

    [8]    Adegun, A., &Viriri, S. (2021). Deep learning techniques for skin lesion analysis and melanoma cancer detection: a survey of state-of-the-art. Artificial Intelligence Review, 54, 811-841.

    [9]    Bassel, A., Abdulkareem, A. B., Alyasseri, Z. A. A., Sani, N. S., & Mohammed, H. J. (2022). Automatic malignant and benign skin cancer classification using a hybrid deep learning approach. Diagnostics, 12(10), 2472.

    [10] Tembhurne, J. V., Hebbar, N., Patil, H. Y., & Diwan, T. (2023). Skin cancer detection using ensemble of machine learning and deep learning techniques. Multimedia Tools and Applications, 1-24.

    [11] Adla, D., Reddy, G. V. R., Nayak, P., & Karuna, G. (2022). Deep learning-based computer aided diagnosis model for skin cancer detection and classification. Distributed and Parallel Databases, 40(4), 717-736.

    [12] Nancy, V. A. O., Prabhavathy, P., Arya, M. S., & Ahamed, B. S. (2023). Comparative study and analysis on skin cancer detection using machine learning and deep learning algorithms. Multimedia Tools and Applications, 1-45.

    [13] Inthiyaz, S., Altahan, B. R., Ahammad, S. H., Rajesh, V., Kalangi, R. R., Smirani, L. K., ... & Rashed, A. N. Z. (2023). Skin disease detection using deep learning. Advances in Engineering Software, 175, 103361.

    [14] Ashraf, R., Kiran, I., Mahmood, T., Butt, A. U. R., Razzaq, N., & Farooq, Z. (2020, November). An efficient technique for skin cancer classification using deep learning. In 2020 IEEE 23rd International Multitopic Conference (INMIC) (pp. 1-5). IEEE.

    [15] Adegun, A. A., &Viriri, S. (2019). Deep learning-based system for automatic melanoma detection. IEEE Access, 8, 7160-7172.

    [16] Alfi, I. A., Rahman, M. M., Shorfuzzaman, M., & Nazir, A. (2022). A non-invasive interpretable diagnosis of melanoma skin cancer using deep learning and ensemble stacking of machine learning models. Diagnostics, 12(3), 726.

    [17] Ali, M. S., Miah, M. S., Haque, J., Rahman, M. M., & Islam, M. K. (2021). An enhanced technique of skin cancer classification using deep convolutional neural network with transfer learning models. Machine Learning with Applications, 5, 100036.

    [18] American Cancer Society, “Cancer Facts and Figures 2019.” [Online]. Available: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-factsand-figures/2019/cancer-facts-and-figures-2019.pdf.

    [19] C. Szegedy, S. Ioffe, V. Vanhoucke, A.A. Alemi, Inception-v4, inception-ResNet and the impact of residual connections on learning, in 31st AAAI Conference on Artificial Intelligence, AAAI 2017 (2017)

    [20] Krishna, T., Praveen, S. P., Ahmed, S., & Srinivasu, P. N. (2023). Software-driven secure framework for mobile healthcare applications in IoMT. Intelligent Decision Technologies17(2), 377-393.

    [21] Codella, N., Rotemberg, V., Tschandl, P., Celebi, M. E., Dusza, S., Gutman, D., ... & Halpern, A. (2019). Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). arXiv preprint arXiv:1902.03368.

    [22] Praveen, S. P., Thati, B., Anuradha, C., Sindhura, S., & Altaee, M. (2023). A novel approach for enhance fusion based healthcare system in cloud computing. Full Length Article9(1), 84-4.

    [23] Das, K., Cockerell, C. J., Patil, A., Pietkiewicz, P., Giulini, M., Grabbe, S., &Goldust, M. (2021). Machine learning and its application in skin cancer. International Journal of Environmental Research and Public Health, 18(24), 13409.

    [24] Praveen, S. P., Jyothi, V. E., Anuradha, C., VenuGopal, K., Shariff, V., & Sindhura, S. (2022). Chronic kidney disease prediction using ML-based Neuro-Fuzzy model. International Journal of Image and Graphics, 2340013.

    [25] H., Mina. , M., Abbas. , Kadhim, Alaa. , M., El-Sayed. Enhancement CNN based on LSTM for vital sign classification. Journal of Fusion: Practice and Applications, vol. 13, no. 2, 2023, pp. 22-33. DOI: https://doi.org/10.54216/FPA.130202

    [26] International Skin Imaging Collaboration, “ISIC 2018: Skin Lesion Analysis Towards Melanoma Detection,” 2018. [Online]. Available: https://challenge2018.isic-archive.com/ Accessed: 29-Oct-2019

    [27] Prasad, Maruthi. , R., Santhosh. Randomized Vector Network Model for Thyroid Prediction Using Relief And Lasso Feature Selection Approaches. Journal of Fusion: Practice and Applications, vol. 12, no. 2, 2023, pp. 132-144. DOI: https://doi.org/10.54216/FPA.120211

    [28] Venkatesh, K. Pasupathy, S. P., S. (2023). A Learning Model for Acute Myeloid Leukemia Prediction Using Dense Polynomial Dimensionality-Based Predictor. Journal of Fusion: Practice and Applications, 12( 2), 145-158. DOI: https://doi.org/10.54216/FPA.120212

    [29] Madhuri, A., Jyothi, V. E., Praveen, S. P., Altaee, M., & Abdullah, I. N. (2023). Granulation-Based Data Fusion Approach for a Critical Thinking Worldview Information Processing. Journal of Intelligent Systems and Internet of Things9(1), 49-68.

    [30] Li, Y., & Shen, L. (2018). Skin lesion analysis towards melanoma detection using deep learning network. Sensors, 18(2), 556.

    [31] Maurya, S., Tiwari, S., Mothukuri, M. C., Tangeda, C. M., Nandigam, R. N. S., &Addagiri, D. C. (2023). A review on recent developments in cancer detection using Machine Learning and Deep Learning models. Biomedical Signal Processing and Control, 80, 104398.

    [32] Praveen, S. P., Murali Krishna, T. B., Anuradha, C. H., Mandalapu, S. R., Sarala, P., & Sindhura, S. (2022). A robust framework for handling health care information based on machine learning and big data engineering techniques. International Journal of Healthcare Management, 1-18.

    [33] P. Tschandl, C. Rosendahl, H. Kittler, Data descriptor: the HAM10000 dataset, a large collection of multi-sourcedermatoscopic images of common pigmented skin lesions. Sci. Data (2018)

    [34] Pacheco, A. G., &Krohling, R. A. (2019). Recent advances in deep learning applied to skin cancer detection. arXiv preprint arXiv:1912.03280.

    [35] Rahi, M. M. I., Khan, F. T., Mahtab, M. T., Ullah, A. A., Alam, M. G. R., &Alam, M. A. (2019, December). Detection of skin cancer using deep neural networks. In 2019 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE) (pp. 1-7). IEEE.

    [36] Rezk, E., Eltorki, M., & El-Dakhakhni, W. (2022). Improving skin color diversity in cancer detection: deep learning approach. JMIR Dermatology, 5(3), e39143.

    [37] Srinivasu, P. N., Sirisha, U., Sandeep, K., Praveen, S. P., Maguluri, L. P., & Bikku, T. (2024). An Interpretable Approach with Explainable AI for Heart Stroke Prediction. Diagnostics14(2), 128.

    [38] Shah, V., Autee, P., & Sonawane, P. (2020, December). Detection of melanoma from skin lesion images using deep learning techniques. In 2020 International Conference on Data Science and Engineering (ICDSE) (pp. 1-8). IEEE.

    [39] Singh, S. K., Abolghasemi, V., &Anisi, M. H. (2023). Fuzzy logic with deep learning for detection of skin cancer. Applied Sciences, 13(15), 8927.

    [40] Sri Geetha, M., Selvarani, A. G., Kumar, R., Degadwala, S., &Veluri, R. K. (2021). Automatic Detection and Classification Of Melanoma Skin Cancer through Deep Learning Techniques. NVEO-NATURAL VOLATILES & ESSENTIAL OILS Journal| NVEO, 7584-7594.

    [41] Thapar, P., Rakhra, M., Cazzato, G., & Hossain, M. S. (2022). A novel hybrid deep learning approach for skin lesion segmentation and classification. Journal of Healthcare Engineering, 2022.

    [42] Tlaisun, L., Hussain, J., Hnamte, V., Chhakchhuak, L., & Hmar, L. (2023). Efficient Deep Learning Approach for Modern Skin Cancer Detection. Indian Journal of Science and Technology, 16, 110-120.

    [43] Viknesh, C. K., Kumar, P. N., Seetharaman, R., & Anitha, D. (2023). Detection and Classification of Melanoma Skin Cancer Using Image Processing Technique. Diagnostics, 13(21), 3313.

    [44] World Cancer Research Fund - Skin Cancer Statistics, 2018. [Online]. Available: https:// www.wcrf.org/dietandcancer/cancer-trends/skin-cancer-statistics.Accessed: 28-Oct-2019

    [45] Zafar, M., Sharif, M. I., Sharif, M. I., Kadry, S., Bukhari, S. A. C., & Rauf, H. T. (2023). Skin lesion analysis and cancer detection based on machine/deep learning techniques: A comprehensive survey. Life, 13(1), 146.

    Cite This Article As :
    Koneru, Sowmya. , Madhavi, Pappula. , Kishore, Krishna. , V., Janjhyam. , Nagaraju, Venkata. , Phani, S.. Employing Deep Learning Techniques for the Identification and Assessment of Skin Cancer. Fusion: Practice and Applications, vol. , no. , 2024, pp. 63-85. DOI: https://doi.org/10.54216/FPA.160205
    Koneru, S. Madhavi, P. Kishore, K. V., J. Nagaraju, V. Phani, S. (2024). Employing Deep Learning Techniques for the Identification and Assessment of Skin Cancer. Fusion: Practice and Applications, (), 63-85. DOI: https://doi.org/10.54216/FPA.160205
    Koneru, Sowmya. Madhavi, Pappula. Kishore, Krishna. V., Janjhyam. Nagaraju, Venkata. Phani, S.. Employing Deep Learning Techniques for the Identification and Assessment of Skin Cancer. Fusion: Practice and Applications , no. (2024): 63-85. DOI: https://doi.org/10.54216/FPA.160205
    Koneru, S. , Madhavi, P. , Kishore, K. , V., J. , Nagaraju, V. , Phani, S. (2024) . Employing Deep Learning Techniques for the Identification and Assessment of Skin Cancer. Fusion: Practice and Applications , () , 63-85 . DOI: https://doi.org/10.54216/FPA.160205
    Koneru S. , Madhavi P. , Kishore K. , V. J. , Nagaraju V. , Phani S. [2024]. Employing Deep Learning Techniques for the Identification and Assessment of Skin Cancer. Fusion: Practice and Applications. (): 63-85. DOI: https://doi.org/10.54216/FPA.160205
    Koneru, S. Madhavi, P. Kishore, K. V., J. Nagaraju, V. Phani, S. "Employing Deep Learning Techniques for the Identification and Assessment of Skin Cancer," Fusion: Practice and Applications, vol. , no. , pp. 63-85, 2024. DOI: https://doi.org/10.54216/FPA.160205