Fusion: Practice and Applications

Journal DOI

https://doi.org/10.54216/FPA

Submit Your Paper

2692-4048ISSN (Online) 2770-0070ISSN (Print)
Full Length Article

Fusion: Practice and Applications

Volume 16 , Issue 2 , PP: 08-21, 2024 | Cite this article as | XML | Html | PDF

Fusion Data Management and Modeling Techniques in Power Quality Compensation Using SAPF

Jessica N. Castillo 1 * , Guido G. Carrillo 2 , Luigi O. Freire 3 , Javier Culqui 4

  • 1 Technical University of Cotopaxi, Cotopaxi, Ecuador - (jessica.castillo@utc.edu.ec)
  • 2 Technical University of Cotopaxi, Cotopaxi, Ecuador - (guido.carrillo2303@utc.edu.ec)
  • 3 Technical University of Cotopaxi, Cotopaxi, Ecuador. - (luigi.freire@utc.edu.ec)
  • 4 University of the Armed Forces, ESPE, Ecuador - (jfculqui@espe.edu.ec)
  • Doi: https://doi.org/10.54216/FPA.160201

    Received: July 01, 2023 Revised: November 19, 2023 Accepted: May 25, 2024
    Abstract

    The development of transportation today encompasses a broad range of technological applications that occasionally present new challenges arising from difficulties that require solutions. The article analyzes the difficulties in electric trains concerning the compensation of electric power quality in a traction system using a parallel active power filter (SAPF). From the literature review of several studies, the test distribution system in a distribution network for an electric train system is analyzed, with a variable load and harmonic content. The estimation and control technique used in the SAPF to compensate for the harmonic content and reduce the reactive power at the output of a traction substation is described. A data fusion management strategy is employed in the analyses, demonstrating the system's effectiveness.

    Keywords :

    active filter , harmonic , fusion , data management , power.

    References

    [1]        S. H. Hosseini, F. Shahnia, M. Sarhangzadeh, and E. Babaei, “Power quality improvement of DC electrified railway distribution systems using hybrid filters,” ICEMS 2005 Proc. Eighth Int. Conf. Electr. Mach. Syst., vol. 2, pp. 1273–1277, 2005, doi: 10.1109/ICEMS.2005.202752.

    [2]        R. E. Morrison, “Parameters that influence power quality on industrial frequency AC traction systems,” in 2001 Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No.01CH37262), 2001, vol. 1, pp. 204–209 vol.1, doi: 10.1109/PESS.2001.970013.

    [3]        “IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems,” IEEE Std 519-2014 (Revision of IEEE Std 519-1992). pp. 1–29, 2014, doi: 10.1109/IEEESTD.2014.6826459.

    [4]        “IEEE Recommended Practice for the Analysis of Fluctuating Installations on Power Systems,” IEEE Std 1453-2015 (Revision of IEEE Std 1453-2011). pp. 1–74, 2015, doi: 10.1109/IEEESTD.2015.7317469.

    [5]        Power Electronic Control in Electrical Systems. 2002.

    [6]        IEEE, “IEEE Publication Services and Products Board Operations Manual 2023,” no. February 2002, 2023.

    [7]        H. Akagi, “Active Harmonic Filters,” Proc. IEEE, vol. 93, no. 12, pp. 2128–2141, 2005, doi: 10.1109/JPROC.2005.859603.

    [8]        M. Torabian Esfahani, S. H. Hosseinian, and B. Vahidi, “A new optimal approach for improvement of active power filter using FPSO for enhancing power quality,” Int. J. Electr. Power Energy Syst., vol. 69, pp. 188–199, 2015, doi: 10.1016/j.ijepes.2014.12.078.

    [9]        W. U. Tareen, S. Mekhilef, M. Seyedmahmoudian, and B. Horan, “Active power filter (APF) for mitigation of power quality issues in grid integration of wind and photovoltaic energy conversion system,” Renew. Sustain. Energy Rev., vol. 70, pp. 635–655, 2017, doi: https://doi.org/10.1016/j.rser.2016.11.091.

    [10]     Hatziargyriou, N., Milanovic, J., Rahmann, C., Ajjarapu, V., Canizares, C., Erlich, I., ... & Vournas, C. (2020). Definition and classification of power system stability–revisited & extended. IEEE Transactions on Power Systems36(4), 3271-3281.

    [11]    Chen, M.; Roberts, C.; Weston, P.; Hillmansen, S.; Zhao, N.; Han, X. Harmonic modeling and prediction of high-speed electric trains based on non-parametric confidence interval estimation method. En t. J. Electr. Electrical power system. 2017 , 87 , 176–186.

    [12]   Zhang, R.; Lin, F.; Yang, Z.; Cao, H.; Liu, Y. A Harmonic Resonance Suppression Strategy for a High-Speed ​​Railway Traction Power Supply System with a SHE-PWM Four-Quadrant Converter Based on Active Set Secondary Optimization. Energies 2017 , 10 , 1567.

    [13     Kalair, A.; Abas, N.; Kalair, AR; Saleem, Z.; Khan, N. Review of harmonic analysis, modeling and mitigation techniques. Renew. Hold. Energy Rev. 201778, 1152–1187.

    [14]    Lamlom, A.; Ibrahim, A.; Balci, ME; Karadeniz, A.; Aleem, SHA Optimal design and analysis of type C anti-resonance high-pass filters. In Proceedings of the 2017 IEEE International Conference on Environment and Electrical Engineering y IEEE Industrial and Commercial Power Systems Europe 2017 (EEEIC/I&CPS Europe), Milán, Italia, 6 a 9 de junio de 2017; págs. 1–6.

    [15]   Iwamuro, N.; Laska, T. History, state of the art and future perspectives of IGBTs. IEEE Translation. Electron. Devices. 2017 , 64 , 741–752.

    [16]    Wang, L.; Lam, C.; Wong, M. Design of a thyristor-controlled LC compensator for dynamic reactive power compensation in smart grids. Traducción IEEE. Red inteligente 2017 , 8 , 409–417.

    [17]      Wang, L.; Lam, C.; Wong, M. Selective distortion, reactive and unbalanced power compensation of a thyristor-controlled LC-coupled hybrid active power filter (TCLC-HAPF). Traducción IEEE. power electron. 2017 , 32 , 9065–9077.

    [18]    Wang, L.; Lam, C.; Wong, M. Hybrid structure of static Var compensator and hybrid active power filter (SVC//HAPF) for medium voltage heavy load compensation. Traducción IEEE. Indiana electrón. 2018 , 65 , 4432–4442.

    [19] J. Lara L., J. González S., L. Castrillón A., I. Isaac M., H. Cardona R., and G. López J., “Modelo digital de tracción del Metro de Medellín para análisis de cortocircuitos,” Sci. Tech., vol. 18, no. 1, pp. 285–292, Sep. 2013, [Online]. Available: https://www.redalyc.org/articulo.oa?id=84927487042.

    [20]      A. E. Diaz, M. F. Carrillo, J. A. Velásquez, A. Armstorfer, and E. M. Álvarez Cano, “Simulación del sistema de tracción del metro de Medellín,” no. December 2011, 2015.

    [21]      M. Popescu, A. Bitoleanu, and M. Dobriceanu, “Harmonic current reduction in railway systems,” WSEAS Trans. Syst., vol. 7, no. 7, pp. 689–698, 2008.

    [22]      J. N. Castillo, V. F. Resabala, L. O. Freire, and B. P. Corrales, “Modeling and sensitivity analysis of the building energy consumption using the Monte Carlo method,” Energy Reports, vol. 8, 2022, doi: 10.1016/j.egyr.2022.10.198.

    [23]      J. N. Castillo, G. G. Carrillo, L. O. Freire, and B. P. Corrales, “Energy modeling and simulation of a building to perform sensitivity analysis of energy consumption,” Energy Reports, vol. 8, 2022, doi: 10.1016/j.egyr.2022.10.197.

    [24]      S. Bhattacharya, T. M. Frank, D. M. Divan, and B. Banerjee, “Active filter system implementation,” IEEE Ind. Appl. Mag., vol. 4, no. 5, pp. 47–63, 1998, doi: 10.1109/2943.715508.

    [25]      S. H. Qazi and M. W. Mustafa, “Review on active filters and its performance with grid connected fixed and variable speed wind turbine generator,” Renew. Sustain. Energy Rev., vol. 57, pp. 420–438, 2016, doi: https://doi.org/10.1016/j.rser.2015.12.049.

    [26]      V. D. Yurkevich, “PWM Controller Design based on Singular Perturbation Technique: A Case Study of Buck-Boost DC-DC Converter,” IFAC Proc. Vol., vol. 44, no. 1, pp. 9739–9744, 2011, doi: https://doi.org/10.3182/20110828-6-IT-1002.00963.

    [27]      G. A. Ramos Fuentes, J. A. Cifuentes Quintero, and I. D. Melo Lagos, “High performance control of a three-phase PWM rectifier using odd harmonic high order repetitive control,” Dyna, vol. 83, no. 198, pp. 27–36, 2016, doi: 10.15446/dyna.v83n198.53276.

     

    Cite This Article As :
    N., Jessica. , G., Guido. , O., Luigi. , Culqui, Javier. Fusion Data Management and Modeling Techniques in Power Quality Compensation Using SAPF. Journal of Fusion: Practice and Applications, vol. 16, no. 2, 2024, pp. 08-21. DOI: https://doi.org/10.54216/FPA.160201
    N., J. G., G. O., L. Culqui, J. (2024). Fusion Data Management and Modeling Techniques in Power Quality Compensation Using SAPF. Journal of Fusion: Practice and Applications, 16( 2), 08-21. DOI: https://doi.org/10.54216/FPA.160201
    N., Jessica. G., Guido. O., Luigi. Culqui, Javier. Fusion Data Management and Modeling Techniques in Power Quality Compensation Using SAPF. Journal of Fusion: Practice and Applications 16, no. 2 (2024): 08-21. DOI: https://doi.org/10.54216/FPA.160201
    N., J. , G., G. , O., L. , Culqui, J. (2024) . Fusion Data Management and Modeling Techniques in Power Quality Compensation Using SAPF. Journal of Fusion: Practice and Applications , 16( 2) , 08-21 . DOI: https://doi.org/10.54216/FPA.160201
    N. J. , G. G. , O. L. , Culqui J. [2024]. Fusion Data Management and Modeling Techniques in Power Quality Compensation Using SAPF. Journal of Fusion: Practice and Applications. 16( 2): 08-21. DOI: https://doi.org/10.54216/FPA.160201
    N., J. G., G. O., L. Culqui, J. "Fusion Data Management and Modeling Techniques in Power Quality Compensation Using SAPF," Journal of Fusion: Practice and Applications, vol. 16, no. 2, pp. 08-21, 2024. DOI: https://doi.org/10.54216/FPA.160201