Fusion: Practice and Applications

Journal DOI

https://doi.org/10.54216/FPA

Submit Your Paper

2692-4048ISSN (Online) 2770-0070ISSN (Print)

Volume 15 , Issue 2 , PP: 165-172, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Multiple Polynomial Regression Model for Predicting Surface Roughness of Titanium Alloy in Electrical Discharge Machining

Nurezayana Zainal 1 * , Azlan Mohd Zain 2 , Mohamad Firdaus A. Aziz 3 , Salama A. Mostafa 4 , Ashanira Mat Deris 5 , Nor B. Abd Warif 6 , Muhammad Ammar S. Shahrom 7

  • 1 Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, 86400, Batu Pahat, Johor, Malaysia - (nurezayana@uthm.edu.my)
  • 2 School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia - (azlanmz@utm.my)
  • 3 Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, 86400, Batu Pahat, Johor, Malaysia - (mdfirdaus@uthm.edu.my)
  • 4 Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, 86400, Batu Pahat, Johor, Malaysia - (salama@uthm.edu.my)
  • 5 Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia - (ashanira@umt.edu.my)
  • 6 Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, 86400, Batu Pahat, Johor, Malaysia - (norbakiah@uthm.edu.my)
  • 7 Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, 86400, Batu Pahat, Johor, Malaysia - (hi210017@student.uthm.edu.my)
  • Doi: https://doi.org/10.54216/FPA.150215

    Received: August 27, 2023 Revised: December 15, 2023 Accepted: April 09, 2024
    Abstract

    This study investigated the experimental work of titanium alloy in the die-sinking electrical discharge (EDM) machining process to enhance surface integrity (surface roughness) by applying regression-based modeling. Furthermore, a multiple polynomial regression (MPR) model was developed to predict surface roughness responses under optimized conditions. The effects of EDM parameters, such as pulse-on time (ON), pulse-off time (OFF), peak current (IP), and servo voltage (SV), on surface roughness were studied. The experiment was conducted using a two-level full factorial design with four center points. Roughness was measured using a surface roughness tester (Formtracer SJ-301). The significant cutting parameters for surface roughness were determined using analysis of variance (ANOVA). The results showed that increasing the servo voltage significantly reduced the surface roughness by 46.48%. The developed model also predicted surface roughness values lower than those observed in the experimental data, with an R2 value of 0.608.

    Keywords :

    Regression , Polynomial Regression , Surface roughness , Electrical discharge machining , titanium alloy.

    References

    [1]             X. Liu et al., “Surface roughness prediction method of titanium alloy milling based on CDH platform,” International Journal of Advanced Manufacturing Technology, vol. 119, no. 11–12, pp. 7145–7157, Apr. 2022, doi: 10.1007/s00170-021-08554-6.

    [2]             A. Thakur, P. S. Rao, and M. Y. Khan, “Study and optimization of surface roughness parameter during electrical discharge machining of titanium alloy (Ti-6246),” in Materials Today: Proceedings, 2021, vol. 44, pp. 838–847. doi: 10.1016/j.matpr.2020.10.785.

    [3]             Z. Liu, B. He, T. Lyu, and Y. Zou, “A Review on Additive Manufacturing of Titanium Alloys for Aerospace Applications: Directed Energy Deposition and Beyond Ti-6Al-4V,” JOM, vol. 73, no. 6. Springer, pp. 1804–1818, Jun. 01, 2021. doi: 10.1007/s11837-021-04670-6.

    [4]             D. Mathew Paulson, M. Saif, and M. Zishan, “Optimization of wire-EDM process of titanium alloy-Grade 5 using Taguchi’s method and grey relational analysis,” Mater Today Proc, vol. 72, pp. 144–153, Jan. 2023, doi: 10.1016/j.matpr.2022.06.376.

    [5]             R. Wandra, C. Prakash, and S. Singh, “Experimental investigation and optimization of surface roughness of β-Phase titanium alloy by ball burnishing assisted electrical discharge cladding for implant applications,” in Materials Today: Proceedings, 2021, vol. 48, pp. 975–980. doi: 10.1016/j.matpr.2021.06.070.

    [6]             R. Rathod, D. Kamble, and N. Ambhore, “Performance evaluation of electric discharge machining of titanium alloy-a review,” Journal of Engineering and Applied Science, vol. 69, no. 1. Springer Science and Business Media BV, Dec. 01, 2022. doi: 10.1186/s44147-022-00118-z.

    [7]             Z. Liu, B. He, T. Lyu, and Y. Zou, “A Review on Additive Manufacturing of Titanium Alloys for Aerospace Applications: Directed Energy Deposition and Beyond Ti-6Al-4V,” JOM, vol. 73, no. 6. Springer, pp. 1804–1818, Jun. 01, 2021. doi: 10.1007/s11837-021-04670-6.

    [8]             P. Bocchetta, L. Y. Chen, J. D. C. Tardelli, A. C. dos Reis, F. Almeraya-Calderón, and P. Leo, “Passive layers and corrosion resistance of biomedical ti-6al-4v and β-ti alloys,” Coatings, vol. 11, no. 5. MDPI AG, May 01, 2021. doi: 10.3390/coatings11050487.

    [9]             W. Liu, S. Liu, and L. Wang, “Surface Modification of Biomedical Titanium Alloy: Micromorphology, Microstructure Evolution and Biomedical Applications,” Coatings, vol. 9, no. 4, p. 249, Apr. 2019, doi: 10.3390/coatings9040249.

    [10]          J. Ma et al., “Optimization of EDM process parameters based on variable-fidelity surrogate model,” International Journal of Advanced Manufacturing Technology, vol. 122, no. 3–4, pp. 2031–2041, Sep. 2022, doi: 10.1007/s00170-022-09963-x.

    [11]          N. Zainal, A. Mohd Zain, S. Sharif, H. Nuzly Abdull Hamed, and S. Mohamad Yusuf, “An integrated study of surface roughness in EDM process using regression analysis and GSO algorithm,” in Journal of Physics: Conference Series, Sep. 2017, vol. 892, no. 1. doi: 10.1088/1742-6596/892/1/012002.

    [12]          H. Varol Ozkavak, M. M. Sofu, B. Duman, and S. Bacak, “Estimating surface roughness for different EDM processing parameters on Inconel 718 using GEP and ANN,” CIRP J Manuf Sci Technol, vol. 33, pp. 306–314, May 2021, doi: 10.1016/j.cirpj.2021.04.007.

    [13]          A. Thakur, P. S. Rao, and M. Y. Khan, “Study and optimization of surface roughness parameter during electrical discharge machining of titanium alloy (Ti-6246),” in Materials Today: Proceedings, 2021, vol. 44, pp. 838–847. doi: 10.1016/j.matpr.2020.10.785.

    [14]          S. Shirguppikar et al., “Assessing the effects of uncoated and coated electrode on response variables in electrical discharge machining for ti-6al-4v titanium alloy,” Tribology in Industry, vol. 43, no. 4, pp. 524–534, Dec. 2021, doi: 10.24874/ti.1020.12.20.03.

    [15]          S. Liu, M. Thangaraj, K. Moiduddin, and A. M. Al-Ahmari, “Influence of Adaptive Gap Control Mechanism and Tool Electrodes on Machining Titanium (Ti-6Al-4V) Alloy in EDM Process,” Materials, vol. 15, no. 2, Jan. 2022, doi: 10.3390/ma15020513.

    [16]          P. Karmiris-Obratański, E. L. Papazoglou, B. Leszczyńska-Madej, K. Zagórski, and A. P. Markopoulos, “A comprehensive study on processing ti–6al–4v eli with high power edm,” Materials, vol. 14, no. 2, pp. 1–17, Jan. 2021, doi: 10.3390/ma14020303.

    [17]          A. M. Deris, A. M. Zain, R. Sallehuddin, and S. Sharif, “Experimental study of surface roughness in Electric Discharge Machining (EDM) based on Grey Relational Analysis”, doi: 10.1051/01015.

    [18]          A. M. Deris, A. Zain, R. Sallehuddin, and S. Sharif, “Modeling and Optimization of Electric Discharge Machining Performances using Harmony Search Algorithm,” vol. 18, pp. 56–61.

    [19]          R. Wandra, C. Prakash, and S. Singh, “Experimental investigation and optimization of surface roughness of β-Phase titanium alloy by ball burnishing assisted electrical discharge cladding for implant applications,” in Materials Today: Proceedings, 2021, vol. 48, pp. 975–980. doi: 10.1016/j.matpr.2021.06.070.

    [20]          D. Mathew Paulson, M. Saif, and M. Zishan, “Optimization of wire-EDM process of titanium alloy-Grade 5 using Taguchi’s method and grey relational analysis,” Mater Today Proc, vol. 72, pp. 144–153, Jan. 2023, doi: 10.1016/j.matpr.2022.06.376.

    [21]          N. H. Phan et al., “Experimental investigation of uncoated electrode and PVD AlCrNi coating on surface roughness in electrical discharge machining of Ti-6Al-4V,” International Journal of Engineering, Transactions A: Basics, vol. 34, no. 4, pp. 928–934, Apr. 2021.

    [22]          Zaineb Hameed Neamah, Ahmad Al-Talabi, Asma A. Mohammed Ali, Regression Analysis and Artificial Neural Network Approach to Predict of Surface Roughness in Milling Process, Journal of Fusion: Practice and Applications, Vol. 13 , No. 1 , (2023) : 37-48 (Doi   :  https://doi.org/10.54216/FPA.130103)

    [23]          S. Bhowmick, R. Mondal, S. Sarkar, N. Biswas, J. De, and G. Majumdar, “Parametric optimization and prediction of MRR and surface roughness of titanium mixed EDM for Inconel 718 using RSM and fuzzy logic,” CIRP J Manuf Sci Technol, vol. 40, pp. 10–28, Feb. 2023.

    [24]          Z. Y. Algamal, M. R. Abonazel, & A. F. Lukman, Modified Jackknife Ridge Estimator for Beta Regression Model with Application to Chemical Data. International Journal of Mathematics, Statistics, and Computer Science, 2023, v. 1, 15–24, doi.org/10.59543/ijmscs.v1i.7713

    [25]          Rama Hussen Omar, Mohamed Najeb Kayali, Mohamed Bisher Zeina, Neutrosophic Multinominal Logistic Regression Technique for Optimizing Adaptive Reuse of Historical Castles, Journal of International Journal of Neutrosophic Science, Vol. 21 , No. 3 , (2023) : 56-63 (Doi   :  https://doi.org/10.54216/IJNS.210305)

     

     

    Cite This Article As :
    Zainal, Nurezayana. , Mohd, Azlan. , Firdaus, Mohamad. , A., Salama. , Mat, Ashanira. , B., Nor. , Ammar, Muhammad. Multiple Polynomial Regression Model for Predicting Surface Roughness of Titanium Alloy in Electrical Discharge Machining. Fusion: Practice and Applications, vol. , no. , 2024, pp. 165-172. DOI: https://doi.org/10.54216/FPA.150215
    Zainal, N. Mohd, A. Firdaus, M. A., S. Mat, A. B., N. Ammar, M. (2024). Multiple Polynomial Regression Model for Predicting Surface Roughness of Titanium Alloy in Electrical Discharge Machining. Fusion: Practice and Applications, (), 165-172. DOI: https://doi.org/10.54216/FPA.150215
    Zainal, Nurezayana. Mohd, Azlan. Firdaus, Mohamad. A., Salama. Mat, Ashanira. B., Nor. Ammar, Muhammad. Multiple Polynomial Regression Model for Predicting Surface Roughness of Titanium Alloy in Electrical Discharge Machining. Fusion: Practice and Applications , no. (2024): 165-172. DOI: https://doi.org/10.54216/FPA.150215
    Zainal, N. , Mohd, A. , Firdaus, M. , A., S. , Mat, A. , B., N. , Ammar, M. (2024) . Multiple Polynomial Regression Model for Predicting Surface Roughness of Titanium Alloy in Electrical Discharge Machining. Fusion: Practice and Applications , () , 165-172 . DOI: https://doi.org/10.54216/FPA.150215
    Zainal N. , Mohd A. , Firdaus M. , A. S. , Mat A. , B. N. , Ammar M. [2024]. Multiple Polynomial Regression Model for Predicting Surface Roughness of Titanium Alloy in Electrical Discharge Machining. Fusion: Practice and Applications. (): 165-172. DOI: https://doi.org/10.54216/FPA.150215
    Zainal, N. Mohd, A. Firdaus, M. A., S. Mat, A. B., N. Ammar, M. "Multiple Polynomial Regression Model for Predicting Surface Roughness of Titanium Alloy in Electrical Discharge Machining," Fusion: Practice and Applications, vol. , no. , pp. 165-172, 2024. DOI: https://doi.org/10.54216/FPA.150215