Fusion: Practice and Applications

Journal DOI

https://doi.org/10.54216/FPA

Submit Your Paper

2692-4048ISSN (Online) 2770-0070ISSN (Print)

Volume 15 , Issue 2 , PP: 89-101, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Intelligent Enhanced Mobile Robotics Navigation: Integrating Neural Networks with Type-2 Fuzzy Logic for Dynamic Environments

Mohammed R. Hashim Al-Dahhan 1 * , Mahmood Abdulrazzaq Alsaadi 2 , Ruqayah R. Al-Dahhan 3 , Salah A. Aliesawi 4

  • 1 College of Computer Science and Information Technology; University of Anbar, Ramadi, Anbar, Iraq - (mohammed.rabeea@uoanbar.edu.iq)
  • 2 Computer Science Department, Al-Maarif University Collage, Ramadi, Anbar, Iraq - (alsaadi.m@uoa.edu.iq)
  • 3 College of Computer Science and Information Technology; University of Anbar, Ramadi, Anbar, Iraq - (ruqayah85@uoanbar.edu.iq)
  • 4 College of Computer Science and Information Technology; University of Anbar, Ramadi, Anbar, Iraq - (salah_eng1996@uoanbar.edu.iq)
  • Doi: https://doi.org/10.54216/FPA.150208

    Received: August 24, 2023 Revised: December 24, 2023 Accepted: March 27, 2024
    Abstract

    Intelligent mobile robots move on uncertain grounds, thus requiring good navigation strategies for things like path tracking and obstacle avoidance. This research uses an Omni-drive mobile robot to autonomously approach given objectives in different situations encountered in static and dynamic environments. The paper compares two distinct controllers – fuzzy logic controller and neural network controller- that lead the mobile robot towards its destination without hitting obstacles. These are responsible for adjusting the linear and angular velocities of a mobile robot which makes adaptive navigation possible during real-time. The experimental results have depicted the adaptability of each controller as well as its efficiency especially when dealing with uncertainties involved with the mobile robot navigation system. By systematically evaluating and contrasting them, this study brings out the best performance between Fuzzy Logic and Neural Network Controllers regarding enhancing the autonomy and robustness of Mobile Robots. This research helps to advance knowledge in autonomous systems for practical applications, which will give rise to more efficient navigational techniques for mobile robots; thus, efficient systems that are autonomous become more reliable today. The results show that these controllers are effective in safely steering the robot from its starting point to a specified destination without hitting obstacles.

    Keywords :

    Omni-drive robot , collision environment , neural network controller , type2 fuzzy logic controller.

    References

    [1] Rubio, F.; Valero, F.; Llopis-Albert, C. A review of mobile robots: Concepts, methods, theoretical framework, and applications. Int. J. Adv. Robot. Syst. 2019, 16, 1–22.

    [2] Pandey, A.; Pandey, S.; Parhi, D.R. Mobile robot navigation and obstacle avoidance techniques: A review. Int. Rob. Auto J. 2017, 2, 00022.

    [3] Santiago, C.; Chiu, C.S. Interval Type-2 Fuzzy and PID Dual-Mode Controller for an Autonomous Mobile Robot. In Proceedings of the 2018 International Conference on System Science and Engineering (ICSSE), New Taipei, Taiwan, 28–30 June 2018; pp. 1–6.

    [4] Azzoug, Y.; Pusca, R.; Sahraoui, M.; Ammar, A.; Romary, R.; Cardoso, A.J.M. A single observer for currents estimation in sensor’s fault-tolerant control of induction motor drives. In Proceedings of the 2019 International Conference on Applied Automation and Industrial Diagnostics (ICAAID), Elazig, Turkey, 25–27 September 2019; Volume 1, pp. 1–6.

    [5] Cuevas, F.; Castillo, O.; Cortés-Antonio, P. Design of a Control Strategy Based on Type-2 Fuzzy Logic for Omnidirectional Mobile Robots. J. Mult.-Valued Log. Soft Comput. 2021, 37, 107–136.

    [6] Nadour, M.; Boumehraz, M.; Cherroun, L.; Puig Cayuela, V. Hybrid type-2 fuzzy logic obstacle avoidance system based on the horn-schunck method. Electroteh. Electron. Autom. 2019, 67, 45–51.

    [7] Nyayu, L.H.; Handayani, A.S.; Nurmaini, S.; Yani, I. Application of type-1 and type-2 fuzzy logic controller for the real swarm robot. iJOE 2019, 15, 83–98.

    [8] Ayedi, D.; Boujelben, M.; Rekik, C. Hybrid type-2 fuzzy-sliding mode controller for navigation of mobile robot in an environment containing a dynamic target. J. Robot. 2018, 2018, 8421848. 

    [9] Khairudin, M.; Refalda, R.; Yatmono, S.; Pramono, H.S.; Triatmaja Adhy Kurnia Shah, A. The Mobile Robot Control in Obstacle Avoidance Using Fuzzy Logic Controller. Indones. J. Sci. Technol. 2020, 5, 334–353. 

    [10] Tseng, S.P.; Chen, C.W.; Kuan, T.W.; Hsu, Y.T.; Wang, J.F. Fuzzy Obstacle Avoidance for the Mobile System of Service Robots. Wirel. Commun. Mob. Comput. 2020, 2020, 8887547. 

    [11] Lobna Osman, Multi-criteria Decision Making Model for Industrial Arc Welding Robot, Journal of International Journal of Wireless and Ad Hoc Communication, Vol. 4 , No. 1 , (2022) : 19-30 (Doi   :  https://doi.org/10.54216/IJWAC.040102). 

    [12] Al-Dahhan, R. R., Al-Dahhan, M. R. H., & Jebur, M. H. (2020, June). Target Seeking and Obstacle Avoidance of Omni Robot in an Unknown Environment. In 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) (pp. 1-7). IEEE.

    [13] Guo, J.; Li, C.; Guo, S. A Novel Step Optimal Path Planning Algorithm for the Spherical Mobile Robot Based on Fuzzy Control. IEEE Access 2020, 8, 1394–1405. 

    [14] Kumar, P.B.; Muni, M.K.; Parhi, D.R. Navigational analysis of multiple humanoids using a hybrid regression-fuzzy logic control approach in complex terrains. Appl. Soft Comput. 2020, 89, 106088. 

    [15] Rath, A.K.; Parhi, D.R.; Das, H.C.; Muni, M.K.; Kumar, P.B. Analysis and use of the fuzzy intelligent technique for navigation of humanoid robot in an obstacle-prone zone. Def. Technol. 2018, 14, 677–682. 

    [16] Muni, M.K.; Parhi, D.R.; Kumar, P.; Pandey, K.K.; Kumar, S.; Chhotray, A. Sugeno fuzzy logic analysis: Navigation of multiple humanoids in complex environments. In Proceedings of the International Conference on Artificial Intelligence in Manufacturing & Renewable Energy (ICAIMRE), Bhubaneswar, Odisha, India, 25–26 October 2019. 

    [17] M. R. H. Al-Dahhan and M. M. Ali, “Path tracking control of a mobile robot using fuzzy logic,” in 13th International Multi-Conference on Systems, Signals and Devices, SSD 2016, Mar. 2016, pp. 82–88, doi: 10.1109/SSD.2016.7473656.

    [18] H. Mujtaba, “Safe Navigation of Mobile Robot Using A* Algorithm,” International Journal of Applied Engineering Research, vol. 12, pp. 5532–5539, 2017, [Online]. Available: http://www.ripublication.com.

    [19] M. Boujelben, C. Rekik, and N. Derbel, “A reactive approach for mobile robot navigation in static and dynamic environment using fuzzy logic control,” International Journal of Modelling, Identification and Control, vol. 27, no. 4, pp. 293–302, 2017, doi: 10.1504/IJMIC.2017.084722.

    [20] M. Boujelben, D. Ayedi, C. Rekik, and N. Derbel, “Fuzzy logic controller for mobile robot navigation to avoid dynamic and static obstacles,” in 2017 14th International Multi-Conference on Systems, Signals & Devices (SSD), Mar. 2017, vol. 2017-Janua, pp. 293–298, doi: 10.1109/SSD.2017.8166963.

    [21] A. M. Rao, K. Ramji, B. S. K. S. S. Rao, V. Vasu, and C. Puneeth, “Navigation of non-holonomic mobile robot using neuro-fuzzy logic with integrated safe boundary algorithm,” International Journal of Automation and Computing, vol. 14, no. 3, pp. 285–294, Jun. 2017, doi: 10.1007/s11633-016-1042-y.

    [22] B. Tutuko, S. Nurmaini, Saparudin, and P. Sahayu, “Route optimization of non-holonomic leader-follower control using dynamic Particle Swarm Optimization,” IAENG International Journal of Computer Science, vol. 46, no. 1, 2019.

    [23] B. K. Patle, D. R. K. Parhi, A. Jagadeesh, and S. K. Kashyap, “Application of probability to enhance the performance of fuzzy based mobile robot navigation,” Applied Soft Computing Journal, vol. 75, pp. 265–283, Feb. 2019, doi: 10.1016/j.asoc.2018.11.026.

    [24] F. Rubio, F. Valero, and C. Llopis-Albert, “A review of mobile robots: Concepts, methods, theoretical framework, and applications,” International Journal of Advanced Robotic Systems, vol. 16, no. 2, 2019, doi: 10.1177/1729881419839596.

    [25] Elmousalami, H.H. Artificial intelligence and parametric construction cost estimate modeling: State-of-the-art review. J. Constr. Eng. Manag. 2020, 146, 03119008. 

    [26] Huang, H.; Zhu, D.; Ding, F. Dynamic task assignment and path planning for multi-AUV system in variable ocean current environment. J. Intell. Robot. Syst. 2014, 74, 999–1012. 

    [27] Arena, P.; Blanco, C.F.; Li Noce, A.; Taffara, S.; Patanè, L. Learning Traversability Map of Different Robotic Platforms for Unstructured Terrains Path Planning. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8. 

    [28] Chen, J.; Zhao, P.; Liang, H.; Mei, T. Motion Planning for Autonomous Vehicle Based on Radial Basis Function Neural Network in Unstructured Environment. Sensors 2014, 14, 17548–17566.   [PubMed]

    [29] Al-Mallah, M., Ali, M., & Al-Khawaldeh, M. (2022). Obstacles avoidance for mobile robot using type-2 fuzzy logic controller. Robotics, 11(6), 130.

    [30] Dang, T. V., & Bui, N. T. (2023). Obstacle avoidance strategy for mobile robot based on monocular camera. Electronics, 12(8), 1932.

    [31] Chakravarthi, Maddikera Kalyan, Nithya Venkatesan, Yellapragada Venkata Pavan Kumar, Darsy John Pradeep, and Challa Pradeep Reddy. "Adaptive Type-1 Fuzzy Controller for Lag-Dominant First and Second Order Nonlinear Systems." Engineering Proceedings 56, no. 1 (2023): 200.

    [32] Al-Dahhan, M.R.H.; Al-Dahhan, R.R.H.; Ali, T.R. Multi-layer perceptron neural network mobile robot navigator in an unknown environment. In Indonesian Journal of Electrical Engineering and Computer Science, Vol.31, No.2, August 2023, pp. 725~733

    Cite This Article As :
    R., Mohammed. , Abdulrazzaq, Mahmood. , R., Ruqayah. , A., Salah. Intelligent Enhanced Mobile Robotics Navigation: Integrating Neural Networks with Type-2 Fuzzy Logic for Dynamic Environments. Fusion: Practice and Applications, vol. , no. , 2024, pp. 89-101. DOI: https://doi.org/10.54216/FPA.150208
    R., M. Abdulrazzaq, M. R., R. A., S. (2024). Intelligent Enhanced Mobile Robotics Navigation: Integrating Neural Networks with Type-2 Fuzzy Logic for Dynamic Environments. Fusion: Practice and Applications, (), 89-101. DOI: https://doi.org/10.54216/FPA.150208
    R., Mohammed. Abdulrazzaq, Mahmood. R., Ruqayah. A., Salah. Intelligent Enhanced Mobile Robotics Navigation: Integrating Neural Networks with Type-2 Fuzzy Logic for Dynamic Environments. Fusion: Practice and Applications , no. (2024): 89-101. DOI: https://doi.org/10.54216/FPA.150208
    R., M. , Abdulrazzaq, M. , R., R. , A., S. (2024) . Intelligent Enhanced Mobile Robotics Navigation: Integrating Neural Networks with Type-2 Fuzzy Logic for Dynamic Environments. Fusion: Practice and Applications , () , 89-101 . DOI: https://doi.org/10.54216/FPA.150208
    R. M. , Abdulrazzaq M. , R. R. , A. S. [2024]. Intelligent Enhanced Mobile Robotics Navigation: Integrating Neural Networks with Type-2 Fuzzy Logic for Dynamic Environments. Fusion: Practice and Applications. (): 89-101. DOI: https://doi.org/10.54216/FPA.150208
    R., M. Abdulrazzaq, M. R., R. A., S. "Intelligent Enhanced Mobile Robotics Navigation: Integrating Neural Networks with Type-2 Fuzzy Logic for Dynamic Environments," Fusion: Practice and Applications, vol. , no. , pp. 89-101, 2024. DOI: https://doi.org/10.54216/FPA.150208