Fusion: Practice and Applications

Journal DOI

https://doi.org/10.54216/FPA

Submit Your Paper

2692-4048ISSN (Online) 2770-0070ISSN (Print)

Volume 15 , Issue 2 , PP: 08-16, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Optimizing H.266/VVC Intra Coding with a Genetic Algorithm: Balancing Speed and Quality

Murooj Khalid I. Ibraheem 1 * , Alexander V. Dvorkovich 2

  • 1 Department of Multimedia Technologies and Telecommunications, Phystech-School of Radio Engineering and Computer Technologies (FRKT), Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Russia - (ibragim.m@phystech.edu)
  • 2 Department of Multimedia Technologies and Telecommunications, Phystech-School of Radio Engineering and Computer Technologies (FRKT), Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Russia - (dvork.alex@gmail.com)
  • Doi: https://doi.org/10.54216/FPA.150201

    Received: July 28, 2023 Revised: November 09, 2023 Accepted: February 22, 2024
    Abstract

    The growing need for high-definition video material requires improvements in video encoding systems that maximize encoding performance while simultaneously improving compression efficiency. This paper presents a novel genetic algorithm-based intra-coding optimization method for the H.266/Versatile Video Coding (VVC) standard. One of the biggest problems in video compression is finding the ideal balance between encoding speed and video quality, which is what our approach aims to solve. Our suggested method makes use of the strong search capabilities of the evolutionary algorithm to choose the best Multi-Type Tree (MTT) partitions and coding tools from the wide range of possibilities present in H.266/VVC. The wellness assessment work that guides this choice method combines criteria for perceptual appraisal of video quality and measures for coding productivity appraisal.

    Keywords :

    H.266/VVC , Genetic Algorithm , Intra Coding , Encoding Speed , Video Quality , Optimization , Coding Tools , Multi-Type Tree (MTT) Partitions

    References

    [1]  PhiCong, H., Sisouvong, T., Nam, T. Q., & VuHuu, T. (2023, December). A Comprehensive Study on Objective Assessment Metrics with Light Field Images. In 2023 RIVF International Conference on Computing and Communication Technologies (RIVF) (pp. 569-574). IEEE.

    [2]  Jin, X., & Chai, Y. (2023). Research on Quantization Parameter Decision Scheme for High Efficiency Video Coding. Applied Sciences13(23), 12758.

    [3]  Zhang, C., Yang, W., & Zhang, Q. (2023). Fast CU Division Pattern Decision Based on the Combination of Spatio-Temporal Information. Electronics12(9), 1967.

    [4]  YANG, X., GUO, H., & LI, W. (2023). Optimized bit allocation algorithm for coding tree unit level. Journal of Computer Applications43(10), 3195.

    [5]  Sheng, X., Li, L., Liu, D., & Li, H. (2024). Spatial Decomposition and Temporal Fusion based Inter Prediction for Learned Video Compression. IEEE Transactions on Circuits and Systems for Video Technology.

    [6]  Erfurt, J. (2023). Investigation of Wiener filter techniques for in-loop filtering in video coding.

    [7]  Lee, M., Song, H., Park, J., Jeon, B., Kang, J., Kim, J. G., ... & Sim, D. (2023). Overview of Versatile Video Coding (H. 266/VVC) and Its Coding Performance Analysis. IEIE Transactions on Smart Processing & Computing12(2), 122-154.

    [8]  Wang, Y., Feng, S., Zhang, W., & Yang, F. (2024). VVC Intra Coding Complexity Optimization Based on Early Skipping of the Secondary Transform. IEEE Signal Processing Letters.

    [9]  Fang, J. T., Ou, C. Y., Yeh, T. C., & Wang, Y. Y. (2023, June). Deep Learning Technology to Improve the Coding Efficiency of H. 266/VVC. In 2023 Sixth International Symposium on Computer, Consumer and Control (IS3C) (pp. 194-197). IEEE.

    [10]   Naderi, B., Cutler, R., Khongbantabam, N. S., Hosseinkashi, Y., Turbell, H., Sadovnikov, A., & Zou, Q. (2024, April). VCD: A Video Conferencing Dataset for Video Compression. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 3970-3974). IEEE.

    [11]   Chen, J. J., Chou, Y. G., & Jiang, C. S. (2023). Speed Up VVC Intra-Coding by Learned Models and Feature Statistics. IEEE Access.

    [12]   Uhrina, M., Sevcik, L., Bienik, J., & Smatanova, L. (2024). Performance Comparison of VVC, AV1, HEVC and AVC for High Resolutions.

    [13]   Lv, W., Yuan, H., Liu, Y., & Fu, C. (2023, September). A Neuron Attention-Based Convolutional Neural Network for Intra Luma Quality Enhancement of H. 266/Versatile Video Coding. In 2023 6th International Conference on Information Communication and Signal Processing (ICICSP) (pp. 194-198). IEEE.

    [14]   Huo, J., Wang, D., Yuan, H., Wan, S., & Yang, F. (2023). Adaptive Chroma Prediction Based on Luma Difference for H. 266/VVC. IEEE Transactions on Image Processing32, 6318-6331.

    [15]   Chou, Y. G., & Chen, J. J. (2023, December). H. 266/VVC Time Complexity Reduction by Learned Models and Image Statistical Features. In 2023 IEEE International Conference on Visual Communications and Image Processing (VCIP) (pp. 1-5). IEEE.

    [16]   Zhang, J., Sheng, Q., Pan, R., Wang, J., Qin, K., Huang, X., & Niu, X. (2023). Hardware Architecture Optimization for High-Frequency Zeroing and LFNST in H. 266/VVC Based on FPGA.

    [17]   Yang, R., He, X., Xiong, S., Zhao, Z., & Chen, H. (2023). Fast CU partition strategy based on texture and neighboring partition information for Versatile Video Coding Intra Coding. Multimedia Tools and Applications, 1-18.

    [18]   Shang, X., Li, G., Zhao, X., & Zuo, Y. (2023). Low complexity inter coding scheme for Versatile Video Coding (VVC). Journal of Visual Communication and Image Representation90, 103683.

    [19]   Raufmehr, F., Salehi, M. R., & Abiri, E. (2023). A neuro-fuzzy QP estimation approach for H. 266/VVC-based live video broadcasting systems. Multimedia Tools and Applications, 1-21.

    [20]   Li, Q., Meng, H., & Li, Y. (2023). Texture-based fast QTMT partition algorithm in VVC intra coding. Signal, Image and Video Processing17(4), 1581-1589.

    [21]   Jdidia, S. B., Belghith, F., & Masmoudi, N. (2023, November). Statistical study of the H. 266/VVC Low-Frequency Non-Separable Transform. In 2023 IEEE International Conference on Design, Test and Technology of Integrated Systems (DTTIS) (pp. 1-5). IEEE.

    [22]   Zhao, H., Zhao, S., Shang, X., & Wang, G. (2023). A Fast Algorithm for VVC Intra Coding Based on the Most Probable Partition Pattern List. Applied Sciences13(18), 10381.

    [23]   Chen,I. D. S., Lien, C. M., Chen, M. J., Yeh, C. H., & Lin, Y. H. (2023, July). Region-of-Interest Detection Based on Graph Convolutional Network and H. 266/VVC Encoded Video. In 2023 International Conference on Consumer Electronics-Taiwan (ICCE-Taiwan) (pp. 631-632). IEEE.

    [24]   Tsai, Y. H., Lu, C. R., Chen, M. J., Hsieh, M. C., Yang, C. M., & Yeh, C. H. (2023). Visual Perception Based Intra Coding Algorithm for H. 266/VVC. Electronics12(9), 2079.

    [25]   Chen, J. J., & Su, J. A. (2023). Fast H. 266/VVC intra-coding by mode inheritance. Multimedia Tools and Applications, 1-25.

    [26] Wang, Y., Huang, Q., Tang, B., Sun, H., & Li, X. (2023). Multiscale Motion-Aware and Spatial-Temporal-Channel Contextual Coding Network for Learned Video Compression. arXiv preprint arXiv:2310.12733.

    Cite This Article As :
    Khalid, Murooj. , V., Alexander. Optimizing H.266/VVC Intra Coding with a Genetic Algorithm: Balancing Speed and Quality. Fusion: Practice and Applications, vol. , no. , 2024, pp. 08-16. DOI: https://doi.org/10.54216/FPA.150201
    Khalid, M. V., A. (2024). Optimizing H.266/VVC Intra Coding with a Genetic Algorithm: Balancing Speed and Quality. Fusion: Practice and Applications, (), 08-16. DOI: https://doi.org/10.54216/FPA.150201
    Khalid, Murooj. V., Alexander. Optimizing H.266/VVC Intra Coding with a Genetic Algorithm: Balancing Speed and Quality. Fusion: Practice and Applications , no. (2024): 08-16. DOI: https://doi.org/10.54216/FPA.150201
    Khalid, M. , V., A. (2024) . Optimizing H.266/VVC Intra Coding with a Genetic Algorithm: Balancing Speed and Quality. Fusion: Practice and Applications , () , 08-16 . DOI: https://doi.org/10.54216/FPA.150201
    Khalid M. , V. A. [2024]. Optimizing H.266/VVC Intra Coding with a Genetic Algorithm: Balancing Speed and Quality. Fusion: Practice and Applications. (): 08-16. DOI: https://doi.org/10.54216/FPA.150201
    Khalid, M. V., A. "Optimizing H.266/VVC Intra Coding with a Genetic Algorithm: Balancing Speed and Quality," Fusion: Practice and Applications, vol. , no. , pp. 08-16, 2024. DOI: https://doi.org/10.54216/FPA.150201