Fusion: Practice and Applications

Journal DOI

https://doi.org/10.54216/FPA

Submit Your Paper

2692-4048ISSN (Online) 2770-0070ISSN (Print)

Volume 15 , Issue 1 , PP: 88-97, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Exploring CIE Lab Color Characteristics for Skin Lesion Images Detection: A Novel Image Analysis Methodology Incorporating Color-based Segmentation and Luminosity Analysis

Marwa Mawfaq M. Al-Hatab 1 * , Ahmed S. Ibrahim Al-Obaidi 2 , Mohammad Abid Al-Hashim 3

  • 1 Technical Engineering College /Northren Technical University, Mosul, Iraq - (marwa.alhatab@ntu.edu.iq)
  • 2 Technical Engineering College /Northren Technical University, Mosul, Iraq - (ahmedsaeed@ntu.edu.iq)
  • 3 Department of Computer Science /Collage of Computer Science and Mathematics / University of Mosul, Iraq - (maqassim@uomosul.edu.iq)
  • Doi: https://doi.org/10.54216/FPA.150108

    Received: August 12, 2023 Revised: December 10, 2023 Accepted: February 18, 2024
    Abstract

    Accurate classification of malignant and benign skin lesions is crucial in dermatology. In this novel research, we propose robust image analysis methodology for skin lesion classification that integrates color-based segmentation with luminosity analysis. Our approach is evaluated on a dataset of 400 skin images, with equal representation of malignant and benign samples. By computing mean color values for the Red Channel Color (RCC), Green Channel Color (GCC), and Blue Channel Color (BCC) in groups of 10 samples, we establish a classification range for precise diagnosis, this research introduces a novel dimension by harnessing the potential of the CIE Lab Color characteristics for skin lesion detection as the most reliable scale for distinguishing between benign and malignant samples. The smaller and more thought variety ranges saw in the glow examination improve difference and perceivability, consequently working with prevalent sore separation. By featuring the meaning of mean histograms for each variety channel, this complete exploration adds to propelling the area of dermatology and presents an imaginative methodology that holds guarantee for PC helped conclusion frameworks in skin malignant growth discovery.

    Keywords :

    CIE lab color , Image segmentation , skin cancer detection.

    References

     [1]   T. Saba, “Computer vision for microscopic skin cancer diagnosis using handcrafted and non-handcrafted features,” Microscopy Research and Technique, vol. 84, no. 6, pp. 1272–1283, 2021, doi: 10.1002/jemt.23686.

     [2]   L. Ferrante di Ruffano et al., “Optical coherence tomography for diagnosing skin cancer in adults,” Cochrane Database of Systematic Reviews, vol. 2018, no. 12, 2018, doi: 10.1002/14651858.CD013189.

     [3]   M. Krishna Monika, N. Arun Vignesh, C. Usha Kumari, M. N. V. S. S. Kumar, and E. Laxmi Lydia, “Skin cancer detection and classification using machine learning,” Materials Today: Proceedings, vol. 33, no. August, pp. 4266–4270, 2020, doi: 10.1016/j.matpr.2020.07.366.

     [4]   H. R. Mhaske and D. A. Phalke, “Melanoma skin cancer detection and classification based on supervised and unsupervised learning,” 2013 International Conference on Circuits, Controls and Communications, CCUBE 2013, pp. 1–5, 2013, doi: 10.1109/CCUBE.2013.6718539.

     [5]   V. Madan, J. T. Lear, and R. M. Szeimies, “Non-melanoma skin cancer,” The Lancet, vol. 375, no. 9715, pp. 673–685, 2010, doi: 10.1016/S0140-6736(09)61196-X.

     [6]   J. Cadet and T. Douki, “Formation of UV-induced DNA damage contributing to skin cancer development,” Photochemical and Photobiological Sciences, vol. 17, no. 12, pp. 1816–1841, 2018, doi: 10.1039/c7pp00395a.

     [7]   S. Franceschi, F. Levi, L. Randimbison, and C. La Vecchia, “Site distribution of different types of skin cancer: New aetiological clues,” International Journal of Cancer, vol. 67, no. 1, pp. 24–28, 1996, doi: 10.1002/(SICI)1097-0215(19960703)67:1<24::AID-IJC6>3.0.CO;2-1.

    [8]    “Ultraviolet radiation.” https://www.who.int/news-room/fact-sheets/detail/ultraviolet-radiation (accessed Dec. 13, 2022).

     [9]   R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2015,” CA: A Cancer Journal for Clinicians, vol. 65, no. 1, pp. 5–29, 2015, doi: 10.3322/caac.21254.

    [10]  “Overview -Skin cancer (non-melanoma).” https://www.nhs.uk/conditions/non-melanoma-skin-cancer/.

    [11] A. S. I. Al-Obaidi, R. R. O. Al-Nima, and T. Han, “Interpreting Arabic Sign Alphabet by Using the Deep Learning,” BIROn - Birkbeck Institutional Research Online BIROn - Birkbeck Institutional Research Online, vol. 23, pp. 71–84, 2022.

    [12] A. S. I. Al-Obaidi, R. R. O. Al-Nima, and T. Han, “Interpreting Arabic sign alphabet by utilizing a glove with sensors,” International journal of health sciences. pp. 7170–7184, 2022, doi: 10.53730/ijhs.v6ns6.12018.

    [13]  H. Dashti et al., “Integrative analysis of mutated genes and mutational processes reveals novel mutational biomarkers in colorectal cancer,” BMC Bioinformatics, vol. 23, no. 1, 2022, doi: 10.1186/s12859-022-04652-8.

    [14]  R. Javanmard, K. JeddiSaravi, and H. Alinejad-Rokny, “Proposed a new method for rules extraction using artificial neural network and artificial immune system in cancer diagnosis,” Journal of Bionanoscience, vol. 7, no. 6, pp. 665–672, 2013, doi: 10.1166/jbns.2013.1160.

    [15]  M. R. Mahmoudi, H. Akbarzadeh, H. Parvin, S. Nejatian, V. Rezaie, and H. Alinejad-Rokny, “Consensus function based on cluster-wise two level clustering,” Artificial Intelligence Review, vol. 54, no. 1, pp. 639–665, 2021, doi: 10.1007/s10462-020-09862-1.

    [16]  M. Ahmadinia et al., “Energy-efficient and multi-stage clustering algorithm in wireless sensor networks usin ... Page 1 of 5 Energy-efficient and multi-stage clustering algorithm in wireless sensor networks usin ... Page 2 of 5,” pp. 3–8, 2014.

    [17]  H. Niu, W. Xu, H. Akbarzadeh, H. Parvin, A. Beheshti, and H. Alinejad-Rokny, “Deep feature learnt by conventional deep neural network,” Computers and Electrical Engineering, vol. 84, 2020, doi: 10.1016/j.compeleceng.2020.106656.

    [18]  M. G. T. and J. F. S. Wager and S. RBenjamin, “Independent Histogram Pursuit for Segmentation of Skin Lesions David,” Bone, vol. 23, no. 1, pp. 1–7, 2011, doi: 10.1109/TBME.2007.910651.Independent.

    [19]  S. K. Singh and A. S. Jalal, “A robust approach for automatic skin cancer disease classification,” India International Conference on Information Processing, IICIP 2016 - Proceedings, no. Xlm, 2017, doi: 10.1109/IICIP.2016.7975301.

    [20]  S. M. Jaisakthi, P. Mirunalini, and C. Aravindan, “Automated skin lesion segmentation of dermoscopic images using GrabCut and kmeans algorithms,” IET Computer Vision, vol. 12, no. 8, pp. 1088–1095, 2018, doi: 10.1049/iet-cvi.2018.5289.

    [21]  M. Rahman, M. K. Nasir, and S. I. Khan, “Hybrid Feature Fusion and Machine Learning Approaches for Melanoma Skin Cancer Detection,” no. January, 2022, doi: 10.20944/preprints2.

    [22]  M. Nawaz et al., “Skin cancer detection from dermoscopic images using deep learning and fuzzy k-means clustering,” Microscopy Research and Technique, vol. 85, no. 1, pp. 339–351, 2022, doi: 10.1002/jemt.23908.

    [23] Hasnain Javed, “Melanoma Skin Cancer Dataset of 10000 Images, ” Kaggle, Available: https://www.kaggle.com/datasets/hasnainjaved/melanoma-skin-cancer-dataset-of-10000-images.

    [24] A. Gijsenij, T. Gevers, and J. van de Weijer, “Comparison of color spaces for skin lesion segmentation,” Skin Research and Technology, vol. 20, no. 4, pp. 444-450, Nov. 2014. doi: 10.1111/srt.12142.

    [25] W. R. Fathel, A. S. I. Al-Obaidi, M. A. Qasim, and M. M. Al-Hatab, "Skin Cancer Detection Using K-Means Clustering-Based Color Segmentation," Texas Journal of Engineering and Technology, vol. 18, pp. 46-52, 2023.

    [26] T.-Y. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie, "Feature Pyramid Networks for Object Detection," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2017, pp. 936-944. doi: 10.1109/CVPR.2017.106.

    [27] A. Taner, M. T. Mengstu, K. Ç. Selvi, H. Duran, Ö. Kabaş, İ. Gür, N. E. Gheorghiță, "Multiclass Apple Varieties Classification Using Machine Learning with Histogram of Oriented Gradient and Color Moments," Applied Sciences, vol. 13, no. 13, pp. 7682, 2023. doi: 10.3390/app13137682.

    [28] S. Roy, K. Bhalla, and R. Patel, "Mathematical analysis of histogram equalization techniques for medical image enhancement: a tutorial from the perspective of data loss," Multimedia Tools and Applications, pp. 1-30, 2023. doi: 10.1007/s11042-023-13639-1.

    [29] W. R. Fathel, A. S. I. Al-Obaidi, M. A. Qasim, and M. M. M. Al-Hatab, "Skin Cancer Detection Using K-Means Clustering-Based Color Segmentation," Texas Journal of Engineering and Technology, vol. 18, pp. 46-52, 2023. doi: 10.1109/TJET.2023.

    [30] W. R. Fathel, M. M. M. Al-Hatab, and M. A. Qasim, "Classification ECG Signals Based on k-Nearest Neighbors (k-NN) Algorithm," Eurasian Journal of Engineering and Technology, vol. 16, pp. 41-46, 2023. doi: 10.1109/EJET.2023.

    [31] M. M. M. Al-Hatab, R.R.O.Al-Nima, M. A. Qasim, "Classifying Healthy and Infected Covid-19 Cases by Employing CT scan Images " Bulletin of Electrical Engineering and Informatics, vol. 11, no. 6, pp. 3279-3287, 2022. doi: 10.11591/eei.v11i6.4344.

    [32] E. Y. Abd-jabbar, M. M. M. Al-Hatab, M. A. Qasim, M. A. Fadhil, "Clinical Fusion for Real- Time Complex QRS Pattern Detection in Wearable ECG Using the Pan-Tompkins Algorithm," Fusion: Practice and Application (FPA),vol.12, no. 2, PP.172-184 , 2023,doi: 10.54216/FPA.120214.

    [33] R.R.O.Al-Nima, M. M. M. Al-Hatab, M. A. Qasim, "An Artificial Intelligence Approach for Verifying Persons by Employing the Deoxyribonucleic Acid (DNA) Nucleotides"  Journal of Electrical and Computer Engineering, Vol 2023 , doi:10.1155/2023/6678837.

     

    Cite This Article As :
    Mawfaq, Marwa. , S., Ahmed. , Abid, Mohammad. Exploring CIE Lab Color Characteristics for Skin Lesion Images Detection: A Novel Image Analysis Methodology Incorporating Color-based Segmentation and Luminosity Analysis. Fusion: Practice and Applications, vol. , no. , 2024, pp. 88-97. DOI: https://doi.org/10.54216/FPA.150108
    Mawfaq, M. S., A. Abid, M. (2024). Exploring CIE Lab Color Characteristics for Skin Lesion Images Detection: A Novel Image Analysis Methodology Incorporating Color-based Segmentation and Luminosity Analysis. Fusion: Practice and Applications, (), 88-97. DOI: https://doi.org/10.54216/FPA.150108
    Mawfaq, Marwa. S., Ahmed. Abid, Mohammad. Exploring CIE Lab Color Characteristics for Skin Lesion Images Detection: A Novel Image Analysis Methodology Incorporating Color-based Segmentation and Luminosity Analysis. Fusion: Practice and Applications , no. (2024): 88-97. DOI: https://doi.org/10.54216/FPA.150108
    Mawfaq, M. , S., A. , Abid, M. (2024) . Exploring CIE Lab Color Characteristics for Skin Lesion Images Detection: A Novel Image Analysis Methodology Incorporating Color-based Segmentation and Luminosity Analysis. Fusion: Practice and Applications , () , 88-97 . DOI: https://doi.org/10.54216/FPA.150108
    Mawfaq M. , S. A. , Abid M. [2024]. Exploring CIE Lab Color Characteristics for Skin Lesion Images Detection: A Novel Image Analysis Methodology Incorporating Color-based Segmentation and Luminosity Analysis. Fusion: Practice and Applications. (): 88-97. DOI: https://doi.org/10.54216/FPA.150108
    Mawfaq, M. S., A. Abid, M. "Exploring CIE Lab Color Characteristics for Skin Lesion Images Detection: A Novel Image Analysis Methodology Incorporating Color-based Segmentation and Luminosity Analysis," Fusion: Practice and Applications, vol. , no. , pp. 88-97, 2024. DOI: https://doi.org/10.54216/FPA.150108