Fusion: Practice and Applications

Journal DOI

https://doi.org/10.54216/FPA

Submit Your Paper

2692-4048ISSN (Online) 2770-0070ISSN (Print)

Volume 14 , Issue 2 , PP: 146-158, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Explainable Artificial Intelligence and Natural Language Processing for Unraveling Deceptive Contents

Nadezda Pospelova 1 * , Aiziryak Tarasova 2 , Natalya Subbotina 3 , Natalya Koroleva 4 , Nilufar Raimova 5 , E. Laxmi Lydia 6

  • 1 Candidate of Philological Sciences, Associate Professor of Department of English Philology and Intercultural Communication, Kazan Federal University, Elabuga Institute of KFU, Elabuga, Russia - (pospelova.n.v@mail.ru)
  • 2 Candidate of Philological Sciences, Senior Lecturer of Department of English Philology and Intercultural Communication, Kazan Federal University, Elabuga Institute of KFU, Elabuga, Russia. - (tarasova.a.n@inbox.ru)
  • 3 Senior Lecturer of Department of English Philology and Intercultural Communication, Kazan Federal University, Elabuga Institute of KFU, Elabuga, Russia - (subbotina.n.s@inbox.ru)
  • 4 Candidate of Pedagogical Sciences, Associate Professor of Department of English Philology and Intercultural Communication, Kazan Federal University, Elabuga Institute of KFU, Elabuga, Russia - (koroleva.n.e@list.ru)
  • 5 Senior Lecturer of Primary Education Methodology Department, Urgench State Pedagogical Institute, Urgench, Uzbekistan - (raimova.n.a@mail.ru)
  • 6 Department of Computer Science and Engineering, GMR Institute of Technology, Andhra Pradesh, Rajam 532127, India - (elaxmi2002@yahoo.com)
  • Doi: https://doi.org/10.54216/FPA.140212

    Received: July 18, 2023 Revised: November 18, 2023 Accepted: January 16, 2024
    Abstract

    Deceptive content recognition in social media employing artificial intelligence (AI) includes the use of sophisticated techniques and machine learning (ML) methods to recognize deceptive or wrong data shared on numerous platforms. AI methods analyse textual as well as multimedia content, investigative patterns, linguistic cues, and contextual info to flag latent cases of deception. As a result of the use of natural language processing (NLP) and computer vision (CV), these systems identify subtle nuances, misrepresentation strategies, and anomalies in user-generated content. This active technique permits social media platforms, organizations, and consumers to recognize and diminish the spread of deceptive content, donates to a more reliable online atmosphere, and aids in fighting tasks modelled by misinformation and false news. This study offers a novel sine cosine algorithm with deep learning-based deceptive content detection on social media (SCADL-DCDSM) technique. The SCADL-DCDSM technique incorporates the ensemble learning process with a hyperparameter tuning strategy for classifying the sentiments. Primarily, the SCADL-DCDSM technique pre-processes the input data to change the input data into a valuable format. Moreover, the SCADL-DCDSM algorithm follows the BERT model for the word embedding process. Moreover, the SCADL-DCDSM technique involves an ensemble of three models for sentiment classification such as long short-term memory (LSTM), extreme learning machine (ELM), and attention-based recurrent neural network (ARNN). Finally, SCA can be executed for better hyperparameter choice of the DL models. The SCADL-DCDSM system integrates the explainable artificial intelligence (XAI) system LIME has been employed for a comprehensive explainability and understanding of the black-box process, enhancing correct deceptive content recognition. The simulation result analysis of the SCADL-DCDSM algorithm has been examined on a benchmark database. The simulation outcome illustrated that the SCADL-DCDSM methodology achieves optimum solution than other approaches in terms of different measures.

    Keywords :

    Social Media , Word Embedding , Explainable Artificial Intelligence , BERT , Natural Language Processing

    References

    [1]     Sahoo, S.R. and Gupta, B.B., 2021. Multiple features based approach for automatic fake news detection on social networks using deep learning. Applied Soft Computing, 100, p.106983.

    [2]     Okunoye, O.B. and Ibor, A.E., 2022. Hybrid fake news detection technique with genetic search and deep learning. Computers and Electrical Engineering, 103, p.108344.

    [3]     Kaliyar, R.K., Goswami, A. and Narang, P., 2021. FakeBERT: Fake news detection in social media with a BERT-based deep learning approach. Multimedia tools and applications, 80(8), pp.11765-11788.

    [4]     Chung, W., Zhang, Y. and Pan, J., 2023. A theory-based deep-learning approach to detecting disinformation in financial social media. Information Systems Frontiers, 25(2), pp.473-492.

    [5]     Tashtoush, Y., Alrababah, B., Darwish, O., Maabreh, M. and Alsaedi, N., 2022. A deep learning framework for detection of COVID-19 fake news on social media platforms. Data, 7(5), p.65.

    [6]     Sarkar, S., Tudu, N. and Das, D., 2023. HIJLI-JU-CLEF at MULTI-Fake-DetectiVE: Multimodal Fake News Detection Using Deep Learning Approach. In Proceedings of the Eighth Evaluation Campaign of Natural Language Processing and Speech Tools for Italian. Final Workshop (EVALITA 2023), CEUR. org, Parma, Italy.

    [7]     Sarnovský, M., Maslej-Krešňáková, V. and Ivancová, K., 2022. Fake news detection related to the covid-19 in slovak language using deep learning methods. Acta Polytechnica Hungarica, 19(2), pp.43-57.

    [8]     Ghanem, R. and Erbay, H., 2023. Spam detection on social networks using deep contextualized word representation. Multimedia Tools and Applications, 82(3), pp.3697-3712.

    [9]     Birunda, S.S., Nagaraj, P., Narayanan, S.K., Sudar, K.M., Muneeswaran, V. and Ramana, R., 2022, January. Fake Image Detection in Twitter using Flood Fill Algorithm and Deep Neural Networks. In 2022 12th International Conference on Cloud Computing, Data Science & Engineering (Confluence) (pp. 285-290). IEEE.

    [10]   Maathuis, C. and Godschalk, R., 2023, February. Social Media Manipulation Deep Learning based Disinformation Detection. In International Conference on Cyber Warfare and Security (Vol. 18, No. 1, pp. 237-245).

    [11]   Hamed, S.K., Ab Aziz, M.J. and Yaakub, M.R., 2023. DISINFORMATION DETECTION ABOUT ISLAMIC ISSUES ON SOCIAL MEDIA USING DEEP LEARNING TECHNIQUES. Malaysian Journal of Computer Science, 36(3), pp.242-270.

    [12]   Alouffi, B., Alharbi, A., Sahal, R. and Saleh, H., 2021. An optimized hybrid deep learning model to detect COVID-19 misleading information. Computational Intelligence and Neuroscience, 2021.

    [13]   Fouad, K.M., Sabbeh, S.F. and Medhat, W., 2022. Arabic Fake News Detection Using Deep Learning. Computers, Materials & Continua, 71(2).

    [14]   Sadiq, S., Aljrees, T. and Ullah, S., 2023. Deepfake Detection on Social Media: Leveraging Deep Learning and FastText Embeddings for Identifying Machine-Generated Tweets. IEEE Access.

    [15]   Fan, H., Du, W., Dahou, A., Ewees, A.A., Yousri, D., Elaziz, M.A., Elsheikh, A.H., Abualigah, L. and Al-qaness, M.A., 2021. Social media toxicity classification using deep learning: real-world application UK Brexit. Electronics, 10(11), p.1332.

    [16]   Kaliyar, R.K., Goswami, A., Narang, P. and Chamola, V., 2022. Understanding the Use and Abuse of Social Media: Generalized Fake News Detection With a Multichannel Deep Neural Network. IEEE Transactions on Computational Social Systems.

    [17]   Prakash, O. and Kumar, R., 2023, January. Fake News Detection in Social Networks Using Attention Mechanism. In Proceedings of the International Conference on Cognitive and Intelligent Computing: ICCIC 2021, Volume 2 (pp. 453-462). Singapore: Springer Nature Singapore.

    [18]   Kumar, A. and Sachdeva, N., 2022. A Bi-GRU with attention and CapsNet hybrid model for cyberbullying detection on social media. World Wide Web, 25(4), pp.1537-1550.

    [19]   Atandoh, P., Zhang, F., Adu-Gyamfi, D., Atandoh, P.H. and Nuhoho, R.E., 2023. Integrated deep learning paradigm for document-based sentiment analysis. Journal of King Saud University-Computer and Information Sciences, 35(7), p.101578.

    [20]   Mohammed, A. and Kora, R., 2022. An effective ensemble deep learning framework for text classification. Journal of King Saud University-Computer and Information Sciences, 34(10), pp.8825-8837.

    [21]   Gülmez, B., 2023. Stock price prediction with optimized deep LSTM network with artificial rabbits optimization algorithm. Expert Systems with Applications, 227, p.120346.

    [22]   Wang, Y., Dai, F., Jia, R., Wang, R., Sharifi, H. and Wang, Z., 2023. A novel combined intelligent algorithm prediction model for the tunnel surface settlement. Scientific Reports, 13(1), p.9845.

    [23]   Predić, B., Jovanovic, L., Simic, V., Bacanin, N., Zivkovic, M., Spalevic, P., Budimirovic, N. and Dobrojevic, M., 2023. Cloud-load forecasting via decomposition-aided attention recurrent neural network tuned by modified particle swarm optimization. Complex & Intelligent Systems, pp.1-21.

    [24]   Bacanin, N., Jovanovic, L., Zivkovic, M., Kandasamy, V., Antonijevic, M., Deveci, M. and Strumberger, I., 2023. Multivariate energy forecasting via metaheuristic tuned long-short term memory and gated recurrent unit neural networks. Information Sciences, 642, p.119122.

    [25]   Patil, S., Varadarajan, V., Mazhar, S.M., Sahibzada, A., Ahmed, N., Sinha, O., Kumar, S., Shaw, K. and Kotecha, K., 2022. Explainable artificial intelligence for intrusion detection system. Electronics, 11(19), p.3079.

    [26]   https://www.kaggle.com/datasets/mdepak/fakenewsnet

    [27]   Albraikan, A.A., Maray, M., Alotaibi, F.A., Alnfiai, M.M., Kumar, A. and Sayed, A., 2023. Bio-Inspired Artificial Intelligence with Natural Language Processing Based on Deceptive Content Detection in Social Networking. Biomimetics, 8(6), p.449.

    Cite This Article As :
    Pospelova, Nadezda. , Tarasova, Aiziryak. , Subbotina, Natalya. , Koroleva, Natalya. , Raimova, Nilufar. , Laxmi, E.. Explainable Artificial Intelligence and Natural Language Processing for Unraveling Deceptive Contents. Fusion: Practice and Applications, vol. , no. , 2024, pp. 146-158. DOI: https://doi.org/10.54216/FPA.140212
    Pospelova, N. Tarasova, A. Subbotina, N. Koroleva, N. Raimova, N. Laxmi, E. (2024). Explainable Artificial Intelligence and Natural Language Processing for Unraveling Deceptive Contents. Fusion: Practice and Applications, (), 146-158. DOI: https://doi.org/10.54216/FPA.140212
    Pospelova, Nadezda. Tarasova, Aiziryak. Subbotina, Natalya. Koroleva, Natalya. Raimova, Nilufar. Laxmi, E.. Explainable Artificial Intelligence and Natural Language Processing for Unraveling Deceptive Contents. Fusion: Practice and Applications , no. (2024): 146-158. DOI: https://doi.org/10.54216/FPA.140212
    Pospelova, N. , Tarasova, A. , Subbotina, N. , Koroleva, N. , Raimova, N. , Laxmi, E. (2024) . Explainable Artificial Intelligence and Natural Language Processing for Unraveling Deceptive Contents. Fusion: Practice and Applications , () , 146-158 . DOI: https://doi.org/10.54216/FPA.140212
    Pospelova N. , Tarasova A. , Subbotina N. , Koroleva N. , Raimova N. , Laxmi E. [2024]. Explainable Artificial Intelligence and Natural Language Processing for Unraveling Deceptive Contents. Fusion: Practice and Applications. (): 146-158. DOI: https://doi.org/10.54216/FPA.140212
    Pospelova, N. Tarasova, A. Subbotina, N. Koroleva, N. Raimova, N. Laxmi, E. "Explainable Artificial Intelligence and Natural Language Processing for Unraveling Deceptive Contents," Fusion: Practice and Applications, vol. , no. , pp. 146-158, 2024. DOI: https://doi.org/10.54216/FPA.140212