Volume 14 , Issue 1 , PP: 93-104, 2024 | Cite this article as | XML | Html | PDF | Full Length Article
Anita Madona M. 1 * , Paneer Arokiaraj S. 2
Doi: https://doi.org/10.54216/FPA.140108
Glaucoma is a condition where the eyes of human beings are infected due to retinal damage which could result in loss of vision. It generally occurs due to prolonged pressure on the eye and affects the optic nerve if not treated at the earliest stage. However, it is hard for even experts to detect it at the earlier stage. Hence numerous image processing techniques were applied to identify Glaucoma in retinal eyes. The profound purpose of the work is to propose a pre-processing console to remove outliers in the Glaucoma retinal Fundus images using Denoising techniques of pre-processing to enhance the prediction using image pre-processing and computer vision techniques. The model was created with three stages including applying the denoising model using the Median Filtering for Edge Preservation, Contrast Limited Adaptive Histogram Equalization (CLAHE) and optimizing by eliminating irrelevant features using the Black Widow Optimization model and finally evaluating the performance of denoising techniques using accuracy-based predictions. The results showed that after performing a combination of denoising and optimizing techniques, the image quality was enhanced with 97% outperforming the existing models.
Black Widow Optimization , Denoising Techniques , Glaucoma Prediction , Hybrid Level fusion Models , Image Denoising Optimization , Image Pre-Processing Techniques , Median Filter Technique , Retinal Fundus image
[1] Sumitha, S., & Gokila, S. (2023, May). Experimental Approach to Identify the Optimal Deep CNN Models to Early Detection of Glaucoma from Fundus CT-Scan Images. In 2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS) (pp. 511-515). IEEE.DOI: 10.1109/ICICCS56967.2023.10142248
[2] Aurangzeb, K., Alharthi, R., Haider, S. I., & Alhussein, M. (2023). Systematic Development of AI-Enabled Diagnostic Systems for Glaucoma and Diabetic Retinopathy. IEEE Access. DOI: 10.1109/ACCESS.2023.3317348
[3] Shanthakumari, R., Nalini, C., EM, R. D., Srinisanth, M., Priyadharshinee, R., &Ramanidharan, R. (2023, August). Glaucoma Detection using Fundus Images using Deep Learning. In 2023 International Conference on Circuit Power and Computing Technologies (ICCPCT) (pp. 1887-1894). IEEE. DOI: 10.1109/ICCPCT58313.2023.10245262
[4] Skouta, A., Elmoufidi, A., Jai-Andaloussi, S., &Ouchetto, O. (2023, July). Advances in the Application of Convolutional Neural Networks for Glaucoma Diagnosis. In 2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME) (pp. 1-8). IEEE. DOI: 10.1109/ICECCME57830.2023.10253293
[5] Alghamdi, M., & Abdel-Mottaleb, M. (2021). A comparative study of deep learning models for diagnosing glaucoma from fundus images. IEEE access, 9, 23894-23906.
DOI: 10.1109/ACCESS.2021.3056641
[6] Sangeethaa, S. N. (2023). Presumptive discerning of the severity level of glaucoma through clinical fundus images using hybrid PolyNet. Biomedical Signal Processing and Control, 81, 104347.https://doi.org/10.1016/j.bspc.2022.104347
[7] Jones, I. A., Van Oyen, M. P., Lavieri, M. S., Andrews, C. A., & Stein, J. D. (2021). Predicting rapid progression phases in glaucoma using a soft voting ensemble classifier exploiting Kalman filtering. Health Care Management Science, 24(4), 686-701. https://doi.org/10.1007/s10729-021-09564-2
[8] Veena, H. N., Muruganandham, A., & Kumaran, T. S. (2022). A novel optic disc and optic cup segmentation technique to diagnose glaucoma using deep learning convolutional neural network over retinal fundus images. Journal of King Saud University-Computer and Information Sciences, 34(8), 6187-6198. https://doi.org/10.1016/j.jksuci.2021.02.003
[9] Li, X., Zhang, Y., Li, X., Wang, J., & Lu, M. (2022, November). NIDN: Medical Code Assignment via Note-Code Interaction Denoising Network. In International Symposium on Bioinformatics Research and Applications (pp. 62-74). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-23198-8_7
[10] Hassan, O. N., Sahin, S., Mohammadzadeh, V., Yang, X., Amini, N., Mylavarapu, A., ... & Scalzo, F. (2020). Conditional GAN for prediction of glaucoma progression with macular optical coherence tomography. In Advances in Visual Computing: 15th International Symposium, ISVC 2020, San Diego, CA, USA, October 5–7, 2020, Proceedings, Part II 15 (pp. 761-772). Springer International Publishing. https://doi.org/10.1007/978-3-030-64559-5_61
[11] Wang, Y. M., Shen, R., Lin, T. P., Chan, P. P., Wong, M. O., Chan, N. C., ... & Cheung, C. Y. (2022). Optical coherence tomography angiography metrics predict normal tension glaucoma progression. Acta Ophthalmologica, 100(7), e1455-e1462. https://doi.org/10.1111/aos.15117
[12] Shinde, R. (2021). Glaucoma detection in retinal fundus images using U-Net and supervised machine learning algorithms. Intelligence-Based Medicine, 5, 100038. https://doi.org/10.1016/j.ibmed.2021.100038
[13] Shi, M., Lokhande, A., Fazli, M. S., Sharma, V., Tian, Y., Luo, Y., ... & Wang, M. (2023). Artifact-Tolerant Clustering-Guided Contrastive Embedding Learning for Ophthalmic Images in Glaucoma. IEEE Journal of Biomedical and Health Informatics. DOI: 10.1109/JBHI.2023.3288830
[14] Chen, H. S. L., Chen, G. A., Syu, J. Y., Chuang, L. H., Su, W. W., Wu, W. C., ... & Kang, E. Y. C. (2022). Early Glaucoma Detection by Using Style Transfer to Predict Retinal Nerve Fiber Layer Thickness Distribution on the Fundus Photograph. Ophthalmology Science, 2(3), 100180. https://doi.org/10.1016/j.xops.2022.100180
[15] Li, S., Bi, X., Zhao, Y., & Bi, H. (2023). Extended neighborhood-based road and median filter for impulse noise removal from depth map. Image and Vision Computing, 135, 104709. https://doi.org/10.1016/j.imavis.2023.104709
[16] Mehdizadeh, M., Tavakoli Tafti, K., & Soltani, P. (2023). Evaluation of histogram equalization and contrast limited adaptive histogram equalization effect on image quality and fractal dimensions of digital periapical radiographs. Oral Radiology, 39(2), 418-424. https://doi.org/10.1007/s11282-022-00654-7
[17] Suriyan, K., Ramaingam, N., Rajagopal, S., Sakkarai, J., Asokan, B., & Alagarsamy, M. (2022). Performance analysis of peak signal-to-noise ratio and multipath source routing using different denoising method. Bulletin of Electrical Engineering and Informatics, 11(1), 286-292. https://doi.org/10.11591/eei.v11i1.3332
[18] Chauhan, A., & Prakash, S. (2022). Comparison and performance analysis of pheromone value and cannibalism based black widow optimisation approaches for modelling and parameter estimation of solar photovoltaic mathematical models. Optik, 259, 168943. https://doi.org/10.1016/j.ijleo.2022.168943
[19] Vijayakumar, S. R., & Suresh, P. (2022). Lean based cycle time reduction in manufacturing companies using black widow based deep belief neural network. Computers & Industrial Engineering, 108735. https://doi.org/10.1016/j.cie.2022.108735
[20] Manikandan, N., Divya, P., & Janani, S. (2022). BWFSO: hybrid Black-widow and Fish swarm optimization Algorithm for resource allocation and task scheduling in cloud computing. Materials Today: Proceedings, 62, 4903-4908. https://doi.org/10.1016/j.matpr.2022.03.535
[21] Veena, H. N., Muruganandham, A., & Kumaran, T. S. (2021). A novel optic disc and optic cup segmentation technique to diagnose glaucoma using deep learning convolutional neural network over retinal fundus images. Journal of King Saud University-Computer and Information Sciences.https://doi.org/10.1016/j.jksuci.2021.02.003
[22] Li, S., Li, Z., Guo, L., & Bian, G. B. (2020, December). Glaucoma Detection: Joint Segmentation and Classification Framework via Deep Ensemble Network. In 2020 5th International Conference on Advanced Robotics and Mechatronics (ICARM) (pp. 678-685). IEEE.DOI: 10.1109/ICARM49381.2020.9195312
[23] Anoop, B. N., Pavan, R., Girish, G. N., Kothari, A. R., & Rajan, J. (2020). Stack generalized deep ensemble learning for retinal layer segmentation in optical coherence tomography images. Biocybernetics and Biomedical Engineering, 40(4), 1343-1358.https://doi.org/10.1016/j.bbe.2020.07.010