Fusion: Practice and Applications

Journal DOI

https://doi.org/10.54216/FPA

Submit Your Paper

2692-4048ISSN (Online) 2770-0070ISSN (Print)

Volume 13 , Issue 2 , PP: 106-113, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

Internet of Things based Predictive Crop Yield Analysis: A Distributed Approach

Fausto Vizcaíno Naranjo 1 * , Fredy Cañizares Galarza 2 , Edmundo Jalón Arias 3

  • 1 Universidad Regional Autónoma de los Andes (UNIANDES), Ecuador - (ua.faustovizcaino@uniandes.edu.ec)
  • 2 Universidad Regional Autónoma de los Andes (UNIANDES), Ecuador - (dir.santodomingo@uniandes.edu.ec)
  • 3 Universidad Regional Autónoma de los Andes (UNIANDES), Ecuador - (uq.sistemas@uniandes.edu.ec)
  • Doi: https://doi.org/10.54216/FPA.130209

    Received: April 27, 2023 Revised: July 15, 2023 Accepted: September 27, 2023
    Abstract

    The intersection of IoT technology and machine learning has ushered in a new era of precision agriculture, offering innovative solutions to the pressing challenges of food security and environmental sustainability. This paper presents a comprehensive study on the integration of IoT sensors and machine learning techniques for crop yield prediction, with a focus on the ten most consumed crops worldwide. Leveraging a wealth of historical data encompassing environmental variables, pest conditions, and crop-specific attributes collected by IoT sensors, we develop and rigorously evaluate a predictive model employing gradient-boosting regressors. Our findings reveal that the proposed model excels in capturing the intricate relationships between IoT sensor data and crop yield predictions, outperforming established ML regressors in a series of comprehensive experimental comparisons. These results underscore the potential of data-driven decision-making in agriculture, equipping farmers and policymakers with tools to optimize resource allocation, risk management, and sustainable farming practices. In the context of a growing global population and changing climate, the insights from this research hold significant promise for transforming precision agriculture and enhancing global food production.

    Keywords :

    Precision Agriculture, IoT Sensors , Agriculture Technology , Sensor Data Analysis , Data-driven Farming, Smart Farming , Predictive Analytics , Agricultural IoT , Sensor Networks.

    References

    [1] Akhter, R., & Sofi, S. A. (2022). Precision agriculture using IoT data analytics and machine learning. Journal of King Saud University-Computer and Information Sciences, 34(8), 5602-5618.

    [2] Ahmed Abdelhafeez, Hadeer Mahmoud, Alber S. Aziz, Identify the most Productive Crop to Encourage Sustainable Farming Methods in Smart Farming using Neutrosophic Environment, Neutrosophic syst. appl., vol.6, (2023): pp. 17–24.

    [3] Raj, E. F. I., Appadurai, M., & Athiappan, K. (2022). Precision farming in modern agriculture. In Smart Agriculture Automation Using Advanced Technologies: Data Analytics and Machine Learning, Cloud Architecture, Automation and IoT (pp. 61-87). Singapore: Springer Singapore.

    [4] M. Muthuswamy, A. M. Ali, and A. Abdelhafeez, “Breaking the Silence: Convolutional Neural Networks for Sign Language Recognition in the Deaf Community”, SMIJ, vol. 1, Oct. 2022.

    [5] Sharma, A., Jain, A., Gupta, P., & Chowdary, V. (2020). Machine learning applications for precision agriculture: A comprehensive review. IEEE Access, 9, 4843-4873.

    [6] Ahmed Sleem, Ibrahim Elhenawy, Energy Efficiency and Material Cost Savings by Evolution of Solar Panels Used in Photovoltaic Systems under Neutrosophic Model, Neutrosophic syst. appl., vol.5, (2023): pp. 36–43.

    [7] Sathanapriya, M., Devi, R. P., Sandhya, C., Pokuru, A., HabeeburRahman, T., Jose, B. K., & Gadde, S. (2022, October). Analysis of Hydroponic System Crop Yield Prediction and Crop IoT-based monitoring system for precision agriculture. In 2022 International Conference on Edge Computing and Applications (ICECAA) (pp. 575-578). IEEE.

    [8] Mishra, S. (2021). Emerging Technologies—Principles and Applications in Precision Agriculture. Data Science in Agriculture and Natural Resource Management, 31-53.

    [9] Dakir, A., Barramou, F., & Alami, O. B. (2022). Opportunities for artificial intelligence in precision agriculture using satellite remote sensing. Geospatial Intelligence: Applications and Future Trends, 107-117.

    [10] Rehman, A., Liu, J., Keqiu, L., Mateen, A., & Yasin, M. Q. (2020). Machine learning prediction analysis using IoT for smart farming. Int. J, 8(9), 1-6.

    [11] Garg, S., Pundir, P., Jindal, H., Saini, H., & Garg, S. (2021, July). Towards a multimodal system for precision agriculture using IoT and machine learning. In 2021 12th international conference on computing communication and networking technologies (ICCCNT) (pp. 1-7). IEEE.

    [12] Hossain, M., & Islam, M. (2022). Use of artificial intelligence for precision agriculture in Bangladesh. Journal of Agricultural and Rural Research, 6(2), 81-96.

    [13] Kolipaka, V. R. R. (2020). Predictive analytics using cross media features in precision farming. International Journal of Speech Technology, 23(1), 57-69.

    [14] Bhojwani, Y., Singh, R., Reddy, R., & Perumal, B. (2020, February). Crop selection and IoT based monitoring system for precision agriculture. In 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE) (pp. 1-11). IEEE.

    [15] Song, C., Ma, W., Li, J., Qi, B., & Liu, B. (2022). Development Trends in Precision Agriculture and Its Management in China Based on Data Visualization. Agronomy, 12(11), 2905.

    [16] Martinez, M. A. Q., Espinoza, H. F. V., Vazquez, M. Y. L., & Rios, M. D. G. (2020). Feasibility analysis proposal for an iot infrastructure for the efficient processing of data in agriculture, case study on cocoa. Revista Ibérica de Sistemas e Tecnologias de Informação, (E32), 413-426.

    [17] del Felipe, M. R. C., Vázquez, M. L., & Bermello, J. L. P. (2021). Wireless Sensor Network Applied to Precision Agriculture: A Technical Case Study at the Technical University of Manabí. In Communication, Smart Technologies and Innovation for Society: Proceedings of CITIS 2021 (pp. 525-534). Singapore: Springer Singapore.

    [18] Martinez, M. A. Q., Zapata, D. M. R., Rios, M. D. G., & Vazquez, M. Y. L. (2021). Design of an IoT Architecture in Livestock Environments for the Treatment of Information for the Benefit of Cattle. In Advances in Neuroergonomics and Cognitive Engineering: Proceedings of the AHFE 2021 Virtual Conferences on Neuroergonomics and Cognitive Engineering, Industrial Cognitive Ergonomics and Engineering Psychology, and Cognitive Computing and Internet of Things, July 25-29, 2021, USA (pp. 442-450). Springer International Publishing.

    Cite This Article As :
    Vizcaíno, Fausto. , Cañizares, Fredy. , Jalón, Edmundo. Internet of Things based Predictive Crop Yield Analysis: A Distributed Approach. Fusion: Practice and Applications, vol. , no. , 2023, pp. 106-113. DOI: https://doi.org/10.54216/FPA.130209
    Vizcaíno, F. Cañizares, F. Jalón, E. (2023). Internet of Things based Predictive Crop Yield Analysis: A Distributed Approach. Fusion: Practice and Applications, (), 106-113. DOI: https://doi.org/10.54216/FPA.130209
    Vizcaíno, Fausto. Cañizares, Fredy. Jalón, Edmundo. Internet of Things based Predictive Crop Yield Analysis: A Distributed Approach. Fusion: Practice and Applications , no. (2023): 106-113. DOI: https://doi.org/10.54216/FPA.130209
    Vizcaíno, F. , Cañizares, F. , Jalón, E. (2023) . Internet of Things based Predictive Crop Yield Analysis: A Distributed Approach. Fusion: Practice and Applications , () , 106-113 . DOI: https://doi.org/10.54216/FPA.130209
    Vizcaíno F. , Cañizares F. , Jalón E. [2023]. Internet of Things based Predictive Crop Yield Analysis: A Distributed Approach. Fusion: Practice and Applications. (): 106-113. DOI: https://doi.org/10.54216/FPA.130209
    Vizcaíno, F. Cañizares, F. Jalón, E. "Internet of Things based Predictive Crop Yield Analysis: A Distributed Approach," Fusion: Practice and Applications, vol. , no. , pp. 106-113, 2023. DOI: https://doi.org/10.54216/FPA.130209