Fusion: Practice and Applications

Journal DOI

https://doi.org/10.54216/FPA

Submit Your Paper

2692-4048ISSN (Online) 2770-0070ISSN (Print)

Volume 13 , Issue 1 , PP: 89-102, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

A Review of Glowworm Swarm Optimization Meta-Heuristic Swarm Intelligence and its Fusion in Various Applications

Muhammad A. S. Mohd Shahrom 1 * , Nurezayana Zainal 2 , Mohamad F. Ab. Aziz 3 , Salama A. Mostafa 4

  • 1 Faculty of Computer Science and Information Technology, University Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia - (hi210017@student.uthm.edu.my)
  • 2 Faculty of Computer Science and Information Technology, University Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia - (nurezayana@uthm.edu.my)
  • 3 Faculty of Computer Science and Information Technology, University Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia - (mdfirdaus@uthm.edu.my)
  • 4 Faculty of Computer Science and Information Technology, University Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia - (salama@uthm.edu.my)
  • Doi: https://doi.org/10.54216/FPA.130107

    Received: March 18, 2023 Revised: June 24, 2023 Accepted: August 27, 2023
    Abstract

    Natural phenomena inspire the meta-heuristic algorithm to carry out the aim of reaching the optimal solution. Glowworm swarm optimization (GSO) is an original swarm intelligence algorithm for optimization, which mimic the glow behavior of glowworm that can effectively capture the maximum multimodal function. GSO is part of the meta-heuristic algorithm used to solve the optimization problem. This algorithm solves many problems in optimization, especially in science, engineering, and network. Therefore, this paper review exposes the GSO method in solving the problem in any industry area. This study focuses on the basic flow of GSO, the modification of GSO, and the hybridization of GSO by conducting the previous study of the researcher. Based on this study, the GSO application in the engineering industry gets the highest score of 15% among other sectors.

    Keywords :

    Meta-heuristic , swarm intelligence , glowworm swarm optimization , multimodal function , optimization.

    References

    [1] Thaeer Hammid, A., Awad, O. I., Sulaiman, M. H., Gunasekaran, S. S., Mostafa, S. A., Manoj Kumar, N., ... & Abdulhasan, R. A. (2020). A review of optimization algorithms in solving hydro generation scheduling problems. Energies, 13(11), 2787. Ríos-Mercado, R. Z., & Borraz-Sánchez, C. (2015). Optimization problems in natural gas transportation systems: A state-of-the-art review. In Applied Energy (Vol. 147, pp. 536–555). Elsevier Ltd. https://doi.org/10.1016/j.apenergy.2015.03.017

    [2] Faramarzi, A., Heidarinejad, M., Stephens, B., & Mirjalili, S. (2020). Equilibrium optimizer: A novel optimization algorithm ✩. 191, 105190. https://doi.org/10.1016/j.knosys

    [3] Talbi, E.-G. (2009). Metaheuristics : from design to implementation. John Wiley & Sons.

    [4] Krause, J., Cordeiro, J., Parpinelli, R. S., & Lopes, H. S. A. (2013). A Survey of Swarm Algorithms Applied to Discrete Optimization Problems. In Swarm Intelligence and Bio-Inspired Computation (pp. 169–191). Elsevier Inc. https://doi.org/10.1016/B978-0-12-405163-8.00007-7

    [5] Sampathkumar, A., Mulerikkal, J., & Sivaram, M. (2020). Glowworm swarm optimization for effectual load balancing and routing strategies in wireless sensor networks. Wireless Networks, 26(6), 4227–4238. https://doi.org/10.1007/s11276-020-02336-w

    [6] Shayfull, Z., Hazwan, M. H. M., Nawi, M. A. M., Ahmad, M., Syafiq, M. A. K., & Roslan, A. M. (2019). Warpage optimization on battery cover using Glowworm swarm optimization (GSO). AIP Conference Proceedings, 2129. https://doi.org/10.1063/1.5118108

    [7] Avuçlu, E., Elen, A., & Kahramanli Örnek, H. (2020). Making Inferences About Settlements from Satellite Images Using Glowworm Swarm Optimization. Journal of Electrical Engineering and Technology, 15(5), 2345–2360. https://doi.org/10.1007/s42835-020-00509-3

    [8] Zhou, Y., Luo, Q., & Liu, J. (2014). Glowworm swarm optimization for dispatching system of public transit vehicles. Neural Processing Letters, 40(1), 25–33. https://doi.org/10.1007/s11063-013-9308-7

    [9] Krishnanand, K. N., & Ghose, D. (2009). Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intelligence, 3(2), 87–124. https://doi.org/10.1007/s11721-008-0021-5

    [10] Oramus, P. (2010). IMPROVEMENTS TO GLOWWORM SWARM OPTIMIZATION ALGORITHM.

    [11] Kalaiselvi, T., Nagaraja, P., & Abdul Basith, Z. (2015). A Review on Glowworm Swarm Optimization. International Journal of Information Technology (IJIT), 3. www.ijitjournal.org

    [12] Yin, P. Y., Chen, P. Y., Wei, Y. C., & Day, R. F. (2020). Cyber firefly algorithm based on adaptive memory programming for global optimization. Applied Sciences (Switzerland), 10(24), 1–25. https://doi.org/10.3390/app10248961

    [13] Krishnanand, K., & Ghose, D. (2006). Glowworm swarm-based optimization algorithm for multimodal functions with collective robotics applications. In An International Journal (Vol. 2). IOS Press.

    [14] Aljarah, I., & Ludwig, S. A. (2016). A Scalable MapReduce-enabled Glowworm Swarm Optimization Approach for High Dimensional Multimodal Functions. International Journal of Swarm Intelligence Research, 7(1), 32–54. https://doi.org/10.4018/ijsir.2016010102

    [15] Huang, Z., & Zhou, Y. (2011). Using glowworm swarm optimization algorithm for clustering analysis. Journal of Convergence Information Technology, 6(2), 78–85. https://doi.org/10.4156/jcit.vol6.issue2.9

    [16] Zainal, N., Zain, A. M., Radzi, N. H. M., & Udin, A. (2013). Glowworm swarm optimization (GSO) algorithm for optimization problems: A state-of-the-art review. Applied Mechanics and Materials, 421, 507–511. https://doi.org/10.4028/www.scientific.net/AMM.421.507

    [17] Zhou, Q., Zhou, Y., & Chen, X. (2013). Cloud Model Glowworm Swarm Optimization Algorithm for Functions Optimization. In LNAI (Vol. 7996).

    [18] Nelson Jayakumar, D., & Venkatesh, P. (2014). Glowworm swarm optimization algorithm with topics for solving multiple objective environmental economic dispatch problems. Applied Soft Computing Journal, 23, 375–386. https://doi.org/10.1016/j.asoc.2014.06.049

    [19] Al-Madi, N., Aljarah, I., & Ludwig, S. A. (2014). Parallel Glowworm Swarm Optimization Clustering Algorithm based on MapReduce.

    [20] LI, M., WANG, X., GONG, Y., LIU, Y., & JIANG, C. (2014). Binary glowworm swarm optimization for unit commitment. Journal of Modern Power Systems and Clean Energy, 2(4), 357–365. https://doi.org/10.1007/s40565-014-0084-9

    [21] Jiang, H., & Tang, X. (2014). POLARIMETRIC MIMO RADAR TARGET DETECTION BASED ON GLOWWORM SWARM OPTIMIZATION ALGORITHM.

    [22] Yepes, V., Martí, J. v., & García-Segura, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49(PA), 123–134. https://doi.org/10.1016/j.autcon.2014.10.013

    [23] Tang, Z., & Zhou, Y. (2015). A glowworm swarm optimization algorithm for uninhabited combat air vehicle path planning. Journal of Intelligent Systems, 24(1), 69–83. https://doi.org/10.1515/jisys-2013-0066

    [24] Izzat, D., & Azir, E. (2015). Scheduling Jobs on Cloud Computing Using Glowworm Swarm Optimization Algorithm.

    [25] Liang, T., Qiang, C., Yurong, N., Suhua, Y. U., & Guofa, S. (2015). Adaptive Control of Mechanical Servo System with Glowworm Swarm Friction Identification.

    [26] Chen, Y., Han, W., Wang, W., Xiong, Y., & Tong, L. (2015). Air Pollution Sources Identification Precisely Based on Remotely Sensed Aerosol and Glowworm Swarm Optimization. 2015 IEEE International Conference on Smart City/SocialCom/SustainCom (SmartCity), 112–116. https://doi.org/10.1109/SmartCity.2015.56

    [27] Li, Z., & Huang, X. (2016). Glowworm Swarm Optimization and Its Application to Blind Signal Separation. Mathematical Problems in Engineering, 2016. https://doi.org/10.1155/2016/5481602

    [28] Surender Reddy, S., & Srinivasa Rathnam, C. (2016). Optimal Power Flow using Glowworm Swarm Optimization. International Journal of Electrical Power and Energy Systems, 80, 128–139. https://doi.org/10.1016/j.ijepes.2016.01.036

    [29] Pushpalatha, K., & Ananthanarayana, V. S. (2016). A New Glowworm Swarm Optimization Based Clustering Algorithm for Multimedia Documents. Proceedings - 2015 IEEE International Symposium on Multimedia, ISM 2015, 262–265. https://doi.org/10.1109/ISM.2015.94

    [30] He, L., & Huang, S. (2016). Improved Glowworm Swarm Optimization Algorithm for Multilevel Color Image Thresholding Problem. Mathematical Problems in Engineering, 2016. https://doi.org/10.1155/2016/3196958

    [31] Chen, X., Zhou, Y., Tang, Z., & Luo, Q. (2017). A hybrid algorithm combining glowworm swarm optimization and complete 2-opt algorithm for spherical travelling salesman problems. Applied Soft Computing Journal, 58, 104–114. https://doi.org/10.1016/j.asoc.2017.04.057

    [32] Ding, S., An, Y., Zhang, X., Wu, F., & Xue, Y. (2017). Wavelet twin support vector machines based on glowworm swarm optimization. Neurocomputing, 225, 157–163. https://doi.org/10.1016/j.neucom.2016.11.026

    [33] Chen, Y., Wang, S., Han, W., Xiong, Y., Wang, W., & Tong, L. (2017). A New Air Pollution Source Identification Method Based on Remotely Sensed Aerosol and Improved Glowworm Swarm Optimization. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(8), 3454–3464. https://doi.org/10.1109/JSTARS.2017.2690943

    [34] Jin, Y., Hou, W., Li, G., & Chen, X. (2017). A glowworm swarm optimization-based maximum power point tracking for photovoltaic/thermal systems under non-uniform solar irradiation and temperature distribution. Energies, 10(4). https://doi.org/10.3390/en10040541

    [35] Hugo Nunes, Jose Pombo, Joao Fermeiro, Sılvio Mariano, Maria do Rosario Calado Instituto de Desenvolvimento de Novas Tecnologias (Portugal), Universidade Nova de Lisboa. Faculdade de Ciências e Tecnologia, Institute of Electrical and Electronics Engineers, & IEEE Industrial Electronics Society. (2017). 2017 International Young Engineers Forum (YEF-ECE) : proceedings : Tryp Lisboa Caparica Mar Hotel, Caparica, Portugal, 5 May 2017.

    [36] Pandey, P., Shukla, A., & Tiwari, R. (2018). Three-dimensional path planning for unmanned aerial vehicles using glowworm swarm optimization algorithm. International Journal of System Assurance Engineering and Management, 9(4), 836–852. https://doi.org/10.1007/s13198-017-0663-z

    [37] Zhou, J., & Dong, S. (2018). Hybrid glowworm swarm optimization for task scheduling in the cloud environment. Engineering Optimization, 50(6), 949–964. https://doi.org/10.1080/0305215X.2017.1361418

    [38] Hazwan, M. H. M., Shayfull, Z., Muzammil, R. A., Mohamad Syafiq, A. K., Haidiezul, A. H. M., Shahrin, S., & Ishak, M. I. (2018). Optimization of shrinkage on thick plate plastic part by using glowworm swarm optimization (GSO). AIP Conference Proceedings, 2030. https://doi.org/10.1063/1.5066800

    [39] He, G. (2018). Research on multirobot chemical source positioning based on glowworm swarm optimization. Chemical Engineering Transactions, 66, 1033–1038. https://doi.org/10.3303/CET1866173

    [40] Burugari, V. K., & Periasamy, P. S. (2019). Multi QoS constrained data sharing using hybridized pareto-glowworm swarm optimization. Cluster Computing, 22, 9727–9735. https://doi.org/10.1007/s10586-017-1454-7

    [41] Lu, M., Wang, H., Lin, J., Yi, A., Gu, Y., & Zhao, D. (2019). A nonlinear Wiener system identification based on improved adaptive step-size glowworm swarm optimization algorithm for three-dimensional elliptical vibration cutting. International Journal of Advanced Manufacturing Technology, 103(5–8), 2865–2877. https://doi.org/10.1007/s00170-019-03743-w

    [42] Xiuwu, Y., Qin, L., Yong, L., Mufang, H., Ke, Z., & Renrong, X. (2019). Uneven clustering routing algorithm based on glowworm swarm optimization. Ad Hoc Networks, 93. https://doi.org/10.1016/j.adhoc.2019.101923

    [43] Puttamadappa, C., & Parameshachari, B. D. (2019). Demand side management of small scale loads in a smart grid using glowworm swarm optimization technique. Microprocessors and Microsystems, 71. https://doi.org/10.1016/j.micpro.2019.102886

    [44] Salkuti, S. R. (2019). Optimal power flow using multi-objective glowworm swarm optimization algorithm in a wind energy integrated power system. International Journal of Green Energy, 16(15), 1547–1561. https://doi.org/10.1080/15435075.2019.1677234

    [45] Avuçlu, E., Elen, A., & Kahramanli Örnek, H. (2020). Making Inferences About Settlements from Satellite Images Using Glowworm Swarm Optimization. Journal of Electrical Engineering and Technology, 15(5), 2345–2360. https://doi.org/10.1007/s42835-020-00509-3

    [46] Zhang, C., Wang, L., Zu, X., & Meng, W. (2020). Multi-objective optimization of experimental and analytical residual stresses in pre-stressed cutting of thin-walled ring using glowworm swarm optimization algorithm. International Journal of Advanced Manufacturing Technology, 107(9–10), 3897–3908. https://doi.org/10.1007/s00170-020-05317-7

    [47] Sun, Y., Ma, R., Chen, J., & Xu, T. (2020). Heuristic optimization for grid-interactive net-zero energy building design through the glowworm swarm algorithm. Energy and Buildings, 208. https://doi.org/10.1016/j.enbuild.2019.109644

    [48] Aparajita Chowdhury, D. de. (2020). MSLG-RGSO Movement score based limited grid-mobility approach using reverse GSO for mobile network.

    [49] Chowdhury, A., & De, D. (2021). Energy-efficient coverage optimization in wireless sensor networks based on Voronoi-Glowworm Swarm Optimization-K-means algorithm. Ad Hoc Networks, 122. https://doi.org/10.1016/j.adhoc.2021.102660

    [50] Reddy, D. L., C., P., & Suresh, H. N. (2021). Merged glowworm swarm with ant colony optimization for energy efficient clustering and routing in Wireless Sensor Network. Pervasive and Mobile Computing, 71. https://doi.org/10.1016/j.pmcj.2021.101338

    [51] Maganti, S., Patnaik, M. R., & Srinivas, M. (2021). Metaheuristic Quantum Glowworm Swarm Optimization based Clustering With Secure Routing Protocol for Mobile Adhoc Networks. https://doi.org/10.21203/rs.3.rs-266082/v1

    [52] Mahmood, Q. R., Hasan, A. H., & Khafaji, H. K. (2021). Robot Path Planning Based on Hybrid Adaptive Dimensionality Representation with Glowworm Swarm Optimization. 4th International Iraqi Conference on Engineering Technology and Their Applications, IICETA 2021, 241–246. https://doi.org/10.1109/IICETA51758.2021.9717626

    [53] Raj, D. (2021). A Hybrid Glowworm Swarm Optimization for Enhancing the Lifespan of Wireless Sensor Networks. https://doi.org/10.21203/rs.3.rs-274464/v1

    [54] R.M. Alemelu, K. P. (2022). Hybridization of Pigeon inspired with glowworm’ swarm optimization.

    [55] Chandran, U., Kumarasamy, S., Samikannu, R., Rajamani, M. P. E., Krishnamoorthy, V., & Murugesan, S. (2022). Tournament Selected Glowworm Swarm Optimization Based Measurement of Selective Harmonic Elimination in Multilevel Inverter for Enhancing Output Voltage and Current. Mathematical Problems in Engineering, 2022. https://doi.org/10.1155/2022/58452.

    [56] Algamal, Z. Y., Abonazel, M. R., & Lukman, A. F. (2023). Modified Jackknife Ridge Estimator for Beta Regression Model With Application to Chemical Data. International Journal of Mathematics, Statistics, and Computer Science, 1, 15–24. https://doi.org/10.59543/ijmscs.v1i.7713

    [57] Arif, Z. H., & Cengiz, K. (2023). Severity Classification for COVID-19 Infections based on Lasso-Logistic Regression Model. International Journal of Mathematics, Statistics, and Computer Science, 1, 25–32. https://doi.org/10.59543/ijmscs.v1i.7715

    Cite This Article As :
    A., Muhammad. , Zainal, Nurezayana. , F., Mohamad. , A., Salama. A Review of Glowworm Swarm Optimization Meta-Heuristic Swarm Intelligence and its Fusion in Various Applications. Fusion: Practice and Applications, vol. , no. , 2023, pp. 89-102. DOI: https://doi.org/10.54216/FPA.130107
    A., M. Zainal, N. F., M. A., S. (2023). A Review of Glowworm Swarm Optimization Meta-Heuristic Swarm Intelligence and its Fusion in Various Applications. Fusion: Practice and Applications, (), 89-102. DOI: https://doi.org/10.54216/FPA.130107
    A., Muhammad. Zainal, Nurezayana. F., Mohamad. A., Salama. A Review of Glowworm Swarm Optimization Meta-Heuristic Swarm Intelligence and its Fusion in Various Applications. Fusion: Practice and Applications , no. (2023): 89-102. DOI: https://doi.org/10.54216/FPA.130107
    A., M. , Zainal, N. , F., M. , A., S. (2023) . A Review of Glowworm Swarm Optimization Meta-Heuristic Swarm Intelligence and its Fusion in Various Applications. Fusion: Practice and Applications , () , 89-102 . DOI: https://doi.org/10.54216/FPA.130107
    A. M. , Zainal N. , F. M. , A. S. [2023]. A Review of Glowworm Swarm Optimization Meta-Heuristic Swarm Intelligence and its Fusion in Various Applications. Fusion: Practice and Applications. (): 89-102. DOI: https://doi.org/10.54216/FPA.130107
    A., M. Zainal, N. F., M. A., S. "A Review of Glowworm Swarm Optimization Meta-Heuristic Swarm Intelligence and its Fusion in Various Applications," Fusion: Practice and Applications, vol. , no. , pp. 89-102, 2023. DOI: https://doi.org/10.54216/FPA.130107