Fusion: Practice and Applications

Journal DOI

https://doi.org/10.54216/FPA

Submit Your Paper

2692-4048ISSN (Online) 2770-0070ISSN (Print)

Volume 11 , Issue 2 , PP: 76-89, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

Fusion System for Blockchain Asset Securitization Risk Control Using Adaptive Deep Learning-Based Framework

Raed Khalid 1 * , Omar Saad Ahmed 2 , Talib A. Al-Sharify 3 , Wasfi Hameed 4 , Riyam K. Marjan 5

  • 1 Department of medical instrument engineering techniques, Alfarahidi University, Baghdad, Iraq - (Raed.khalid@duc.edu.iq)
  • 2 Al-Turath University College, Baghdad, 10021, Iraq - (omar.saad@turath.edu.iq)
  • 3 Computer Communication Department, Al Rafidain University College, Baghdad, Iraq - (Talib.abdzaid.elc@ruc.edu.iq)
  • 4 Department of computer engineering techniques, Mazaya University College, Thi Qar, Iraq - (wasfehameed1960@gmail.com)
  • 5 Department of Intelligent Medical Systems, Al- Mustaqbal University college, Babylon 51001, Iraq - (RiyamK.Marjan@mustaqbal-college.edu.iq)
  • Doi: https://doi.org/10.54216/FPA.110206

    Received: November 27, 2022 Accepted: April 09, 2023
    Abstract

    Feature engineering methods, which entail identifying and extracting useful features from big datasets, can be used to enhance the precision of asset securitization. It might be difficult to securitize assets that produce multiple receivables, such as consumer or company debt. In order to overcome these difficulties, companies might think about adopting a fusion system that integrates feature engineering with distributed ledger technologies such as blockchain. Businesses can benefit from implementing a fusion system like the Deep learning-based Adaptive Online Intelligent Framework (DLAOIF) since it allows for better decision-making, less wasted time and money, and less chance of fraud. Financial asset tracking on a blockchain can help investors keep a closer eye on asset performance and related risks, while also decreasing their reliance on credit rating agencies. Blockchain's high data security standards and elimination of regulatory bottlenecks in the securitization process also make it a useful tool for easing the burden of due diligence.

     

    Keywords :

    Blockchain technology , Fusion system , Distributed ledger technology , Asset securitization.

    References

    [1]  Cohen,  L.  R.,  Samuelson,  L.,  &  Katz,  H.  (2017).  How  securitization  can  benefit  from  blockchain technology. The Journal of Structured Finance, 23(2), 51-54.

    [2]  Wu,  B.,  &  Duan,  T.  (2019,  June).  The  Advantages  of  Blockchain  Technology  in  Commercial  Bank Operation  and  Management.  In Proceedings  of  the  2019  4th  International  Conference  on  Machine Learning Technologies (pp. 83-87).

    [3]  Zhao, Q. Y. (2019, July). Research on the Game of Securitization Based on Blockchain Technology. In 5th  Annual  International  Conference  on  Management,  Economics  and  Social  Development (ICMESD 2019). Atlantis Press.

    [4]  Hofmann, E., Strewe, U. M., & Bosia, N. (2018). Introduction—Why to Pay Attention on BlockchainDriven  Supply  Chain  Finance?.  In Supply  Chain  Finance  and  Blockchain  Technology (pp.  1-6). Springer, Cham.

    [5]  Shakeel, P. Mohamed et al. "Lung cancer detection from CT image using improved profuse clustering and deep learning instantaneously trained neural networks." Measurement 145 (2019): 702-712.

    [6]  Dhote, S., Vichoray, C., Pais, R. et al. Hybrid geometric sampling and AdaBoost based deep learning approach  for  data  imbalance  in  E-commerce.  Electron  Commer  Res  (2019). https://doi.org/10.1007/s10660-019-09383-2 

    [7]  ZHAO, C. X., & MENG, X. Y. (2019). Application Research of  Blockchain Technology in Financial Field. DEStech Transactions on Economics, Business and Management, (icem).

    [8]  Huawei  Zhao  ;  Peidong  Bai  ;  Yun  Peng  ;  Ruzhi  Xu.  "Efficient  key  management  scheme  for  health blockchain", CAAI Transactions on Intelligence Technology, Volume 3, Issue 2, p. 114 –118, 2018

    [9]  Cao, Y. (2019). Energy Internet blockchain technology. In The Energy Internet (pp. 45-64). Woodhead Publishing.

    [10]  Kejun  Wang,  Haolin  Wang,  Meichen  Liu,  Xianglei  Xing,  Tian  Han.  "Survey  on  personre-identification  based  on  deep  learning",  CAAI  Transactionson Intelligence Technology, Volume 3, Issue 4, p. 219 –227

    [11]  lakhian, sandeep. (2023). Design and Development of Hybrid Spectrum Access Technique for CR -IoT Network.  Mesopotamian  Journal  of  Computer  Science,  2023,  1–7. https://doi.org/10.58496/MJCSC/2023/001

    [12]  Sanderson,  O.  (2018).  How  to  trust  green  bonds:  Blockchain,  climate,  and  the  institutional  bond markets.  In Transforming  climate  finance  and  green  investment  with  blockchains (pp.  273-288). Academic Press.

    [13]  Wandmacher,  R.,  &  Wegmann,  N.  (2020).  Tokenization  and  Securitization–A  Comparison  with Reference  to  Distributed  Ledger  Technology.  In Facetten der  Digitalisierung (pp.  157-174).  Springer Gabler, Wiesbaden.

    [14]  Zhang, X., & Shi, W. (2018). Path of the Information Asymmetry of Asset Backed Securitization —Information  Game  Analysis  of  Embedded  Block  Chain  Technology.  International  Journal  of Communications, Network and System Sciences, 11(6), 133-146.

    [15]  Knezevic, D. (2018). Impact of blockchain technology platform in changing the financial sector and other industries. Montenegrin Journal of Economics, 14(1), 109-120.

    [16]  Shtybel,  U.  (2019).  A  new  era  of  private  securities:  Application  of  Blockchain  in  private  capital markets infrastructure. Journal of Digital Banking, 4(2), 152-160.

    [17]  Wang, S. (2019, September). Research on the Collection Method of Financial Blockchain Risk Prompt Information  from  Sandbox  Perspective.  In 2019  International  Conference  on  Virtual  Reality  and Intelligent Systems (ICVRIS) (pp. 177-181). IEEE.

    [18]  Hofmann,  E.,  Strewe,  U.  M.,  &  Bosia,  N.  (2018).  Concept—Where  Are  the  Opportunities  of Blockchain-Driven  Supply  Chain  Finance?.  In Supply  chain  finance  and  blockchain  technology (pp. 51-75). Springer, Cham.

    [19]  Walch,  A.  (2015).  The  bitcoin  blockchain  as  financial  market  infrastructure:  A  consideration  of operational risk. NYUJ Legis. & Pub. Pol'y, 18, 837.

    [20]  Gaffney, T. (2016). The Peer-to-Peer Blockchain Mortgage Recording System: Scraping the Mortgage Electronic  Registration System and Replacing It with a System Built off a Blockchain. Wake Forest J. Bus. & Intell. Prop. L., 17, 349.

    [21]  Hou, J., Wang, H., & Liu, P. (2018). Applying the blockchain technology to promote the development of distributed photovoltaic in China. International Journal of Energy Research, 42(6), 2050-2069.

    [22]  Chong,  A.  Y.  L.,  Lim,  E.  T.,  Hua,  X.,  Zheng,  S.,  &  Tan,  C.  W.  (2019).  Business  on  chain:  A comparative  case  study  of  five  blockchain-inspired  business  models. Journal  of  the  Association  for Information Systems, 20(9), 9.

    [23]  Ali, M. H., Jaber, M. M., Khalil Abd, S., Alkhayyat, A., R. Q, M., & Ali, M. H. (2023). Application of internet of things-based efficient security solution for industrial. Production Planning & Control, 1-15.

    [24]  Xinyi, Y., Yi, Z., & He, Y. (2018, July). Technical Characteristics and Model of Blockchain. In  2018 10th  International  Conference  on  Communication  Software  and  Networks  (ICCSN) (pp.  562-566). IEEE.

    [25]  Hoser,  T.  (2016).  Blockchain  basics,  commercial  impacts  and  governance  challenges. Governance Directions, 68(10), 608.

    [26]  Rofia Abada, Abdulhalim Musa Abubakar, & Muhammad Tayyab Bilal. (2022). An Overview on Deep Leaning  Application  of  Big  Data.  Mesopotamian  Journal  of  Big  Data,  2022,  31–35. https://doi.org/10.58496/MJBD/2022/004.

    [27]  Shakeel, P.M., Burhanuddin, M.A., Desa, M.I.: Lung cancer detection from CT image using improved profuse  clustering  and  deep  learning  instantaneously  trained  neural  networks.  Measurement  (2019). https://doi.org/10.1016/j.measurement.2019.05.027

    [28]  Hussein, A. F., ALZubaidi, A. K., Habash, Q. A., & Jaber, M. M. (2019). An adaptive biomedical data managing scheme based on the blockchain technique. Applied Sciences, 9(12), 2494.

    [29]  Ali, S. M., Elameer, A. S., & Jaber, M. M. (2021). IoT network security using autoencoder deep neural network and channel access algorithm. Journal of Intelligent Systems, 31(1), 95-103.

    [30]  Meralli,  S.  (2020).  Privacy-preserving  analytics  for  the  securitization  market:  a  zero-knowledge distributed ledger technology application. Financial Innovation, 6(1), 7.

    Cite This Article As :
    Khalid, Raed. , Saad, Omar. , A., Talib. , Hameed, Wasfi. , K., Riyam. Fusion System for Blockchain Asset Securitization Risk Control Using Adaptive Deep Learning-Based Framework. Fusion: Practice and Applications, vol. , no. , 2023, pp. 76-89. DOI: https://doi.org/10.54216/FPA.110206
    Khalid, R. Saad, O. A., T. Hameed, W. K., R. (2023). Fusion System for Blockchain Asset Securitization Risk Control Using Adaptive Deep Learning-Based Framework. Fusion: Practice and Applications, (), 76-89. DOI: https://doi.org/10.54216/FPA.110206
    Khalid, Raed. Saad, Omar. A., Talib. Hameed, Wasfi. K., Riyam. Fusion System for Blockchain Asset Securitization Risk Control Using Adaptive Deep Learning-Based Framework. Fusion: Practice and Applications , no. (2023): 76-89. DOI: https://doi.org/10.54216/FPA.110206
    Khalid, R. , Saad, O. , A., T. , Hameed, W. , K., R. (2023) . Fusion System for Blockchain Asset Securitization Risk Control Using Adaptive Deep Learning-Based Framework. Fusion: Practice and Applications , () , 76-89 . DOI: https://doi.org/10.54216/FPA.110206
    Khalid R. , Saad O. , A. T. , Hameed W. , K. R. [2023]. Fusion System for Blockchain Asset Securitization Risk Control Using Adaptive Deep Learning-Based Framework. Fusion: Practice and Applications. (): 76-89. DOI: https://doi.org/10.54216/FPA.110206
    Khalid, R. Saad, O. A., T. Hameed, W. K., R. "Fusion System for Blockchain Asset Securitization Risk Control Using Adaptive Deep Learning-Based Framework," Fusion: Practice and Applications, vol. , no. , pp. 76-89, 2023. DOI: https://doi.org/10.54216/FPA.110206