Fusion: Practice and Applications

Journal DOI

https://doi.org/10.54216/FPA

Submit Your Paper

2692-4048ISSN (Online) 2770-0070ISSN (Print)

Volume 11 , Issue 2 , PP: 21-34, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

Enhancing IoT-Based Intelligent Video Surveillance through Multi-Sensor Fusion and Deep Reinforcement Learning

Aymen Hussein 1 * , S. Ahmed 2 , Shorook K. Abed 3 , Noor Thamer 4

  • 1 Department of Medical instruments engineering techniques, Alfarahidi University, Baghdad, Iraq - (Aymen.hussein@alfarahidiuc.edu.iq)
  • 2 Al-Turath University College, Baghdad, 10021, Iraq - (saif.saad@turath.edu.iq)
  • 3 Department of Computer Techniques Engineering, Mazaya University College, Thi Qar, Iraq - (shurooqkamel7@gmail.com)
  • 4 Accounting Department, Al-Mustaqbal University College , 51001 Hillah, Babylon , Iraq - (noorthamer2020@mustaqbal-college.edu.iq)
  • Doi: https://doi.org/10.54216/FPA.110202

    Received: December 13, 2022 Accepted: April 02, 2023
    Abstract

    Currenlty, wireless communication that is successful in the Internet of Things (IoT) must be long-lasting and self-sustaining. The integration of machine learning (ML) techniques, including deep learning (DL), has enabled IoT networks to become highly effective and self-sufficient. DL models, such as enhanced DRL (EDRL), have been developed for intelligent video surveillance (IVS) applications. Combining multiple models and optimizing fusion scores can improve fusion system design and decision-making processes. These intelligent systems for information fusion have a wide range of potential applications, including in robotics and cloud environments. Fuzzy approaches and optimization algorithms can be used to improve data fusion in multimedia applications and e-systems. The camera sensor is developing algorithms for mobile edge computing (MEC) that use action-value techniques to instruct system actions through collaborative decision-making optimization. Combining IoT and deep learning technologies to improve the overall performance of apps is a difficult task. With this strategy, designers can increase security, performance, and accuracy by more than 97.24 %, as per research observations.

    Keywords :

    Machine Learning , Internet of Things , DRL , Intelligent Video Surveillance , Mobile Edge Computing , Fusion System Design.

    References

    [1] Pham, D. V., Nguyen, G. L., Nguyen, T. N., Pham, C. V., & Nguyen, A. V. (2020). Multi-topic misinformation blocking with a budget constraint on online social networks. IEEE Access, 8, 78879-78889.

    [2] Gao, J., Wang, H., & Shen, H. (2020, May). Smartly handling renewable energy instability in supporting a cloud datacenter. In 2020 IEEE international parallel and distributed processing symposium (IPDPS) (pp. 769-778). IEEE.

    [3]  Kumar,  A.,  Biswas,  A.K.,  Kumar,  A.  and  Yadav,  R.K.,  2022,  June.  Optimising  IOT  Based  SmartHome  Systems  Using  Machine-Learning  Algorithm.  In 2022  7th  International  Conference  on Communication and Electronics Systems (ICCES) (pp. 1133-1139). IEEE.

    [4]  Elgendy, I. A., Zhang, W. Z., He, H., Gupta, B. B., & Abd El-Latif, A. A. (2021). Joint computationoffloading and the task is caching for multi-user and multi-task MEC systems: reinforcement learningbased algorithms. Wireless Networks, 27(3), 2023-2038.

    [5]  Jan, M. A., Cai, J., Gao, X. C., Khan, F.,Mastorakis, S., Usman, M.,& Watters, P. (2020). Security and  blockchain  convergence  with  the  Internet  of  Multimedia  Things:  Current  trends,  research challenges, and future directions. Journal of Network and Computer Applications, 102918.

    [6]  Jaber, M.M., Yussof, S., Ali, M.H., Abd, S.K., Jassim, M.M.,  Alkhayyat, A. and Mubarak, H., 2022. PIRAP:  PPDA-FAF:  Maintaining  Data  Security  and  Privacy  in  Green  IoT-Based Agriculture. International Journal of Cooperative Information Systems.

    [7]  Shams  N.  Abdul-wahab,  Mostafa  Abdulghafoor  Mohammed,  &  Omar  A.  Hammood.  (2021). Theoretical  Background  of  steganography.  Mesopotamian  Journal  of  CyberSecurity,  2021,  22–32. https://doi.org/10.58496/MJCS/2021/005

    [8]  Ranjan, G., Nguyen, T. N., Mekky, H., & Zhang, Z. L. (2020, December). On virtual id assignment in networks  for  high  resilience  routing:  a  theoretical  framework.  In  GLOBECOM  2020-2020  IEEE Global Communications Conference (pp. 1-6). IEEE.

    [9]  Gao,  J.,  Wang,  H.,  &  Shen,  H.  (2020).  Task  failure  prediction  in  cloud  data  centers  using  deep learning. IEEE Transactions on Services Computing.

    [10]  Zahraa Faiz Hussain, & Hind Raad Ibraheem. (2023). Novel Convolutional Neural Networks based Jaya  algorithm  Approach  for  Accurate  Deepfake  Video  Detection.  Mesopotamian  Journal  of CyberSecurity, 2023, 35–39. https://doi.org/10.58496/MJCS/2023/007.

    [11]  Abd  EL-Latif,  A.  A.,  Abd-El-Atty,  B.,  &  Venegas-Andraca,  S.  E.  (2020).  Controlled  alternate quantum  walk-based  pseudo-random  number  generator  and  its  application  to  quantum  color  image encryption. Physica A: Statistical Mechanics and its Applications, 547, 123869.

    [12]  Awuson-David, K., Al-Hadhrami, T., Alazab, M., Shah, N., &Shalaginov, A. (2021). BCFL logging: An  approach  to  acquire  and preserve  admissible  digital  forensics  evidence  in  the  cloud  ecosystem. Future Generation Computer Systems, 122, 1-13.

    [13]  Chi, X. C., Yang, Y. S., Wang, Y. H., Gao, J. C., Sui, N., Yang, H. G., ... & Zhang, H. Z. (2015). Studying of photoluminescence characteristics of CdTe/ZnS QDs manipulated by TiO2 inverse opal photonic crystals. Optical Materials, 46, 350-354.

    [14]  Amudha, G. (2021). Dilated Transaction Access and Retrieval: Improving the Information Retrieval of Blockchain-Assimilated Internet of Things Transactions. Wireless Personal Communications, 1-21.

    [15]  Farooqui, N.A., Mishra, A.K. and  Mehra, R., 2022. IOT based automated greenhouse using machine learning  approach. International  Journal  of  Intelligent  Systems  and  Applications  in Engineering, 10(2), pp.226-231.

    [16]  Nassar, A., & Yilmaz, Y. (2021). Deep reinforcement learning for adaptive network slicing in 5G for intelligent vehicular systems and smart cities. IEEE Internet of Things Journal.

    [17]  Liu, Y., Zhang, W., Pan, S., Li, Y., & Chen, Y. (2020). Analyzing the robotic behavior in a smart city with deep enforcement and imitation learning using IoRT. Computer Communications, 150, 346-356.

    [18]  Dai,  Y.,  Xu,  D.,  Maharjan,  S.,  Chen,  Z.,  He,  Q.,  &  Zhang,  Y.  (2019).  Blockchain  and  deep reinforcement learning empowered intelligent 5G beyond. IEEE Network, 33(3), 10-17.

    [19]  Nguyen, T. T., &Reddi, V. J.  (2019). Deep reinforcement learning for cyber security. arXiv preprint arXiv:1906.05799.

    [20]  Janakiramaiah,  B.,  Kalyani,  G.,  &  Jayalakshmi,  A.  (2021).  Automatic  alert  generation  in  a surveillance  system  for  smart  city  environment  using  a  deep  learning  algorith m. Evolutionary Intelligence, 14(2), 635-642.

    [21]  Chen,  Q.,  Wang,  W.,  Wu,  F.,  De,  S.,  Wang,  R.,  Zhang,  B.,  &  Huang,  X.  (2019).  A  survey  on  an emerging  area:  Deep  learning  for  smart  city-data. IEEE  Transactions  on  Emerging  Topics  in Computational Intelligence, 3(5), 392-410.

    [22]  Luong,  N.  C.,  Hoang,  D.  T.,  Gong,  S.,  Niyato,  D.,  Wang,  P.,  Liang,  Y.  C.,  &  Kim,  D.  I.  (2019). Applications  of  deep  reinforcement  learning  in  communications  and  networking:  A  survey. IEEE Communications Surveys & Tutorials, 21(4), 3133-3174.

    [23]  Habibzadeh,  H.,  Kaptan,  C.,  Soyata,  T.,  Kantarci,  B.,  &Boukerche,  A.  (2019).  Smart  city  system design:  A  comprehensive  study  of  the  application  and  data  planes. ACM  Computing  Surveys (CSUR), 52(2), 1-38.

    [24]  Yu, L., Qin, S., Zhang, M., Shen, C., Jiang, T., &  Guan, X. (2021). A review of deep reinforcement learning for smart building energy management. IEEE Internet of Things Journal.

    [25]  Sreenu,  G.,  &Durai,  M.  S.  (2019).  Intelligent  video  surveillance:  a  review  through  deep  learning techniques for crowd analysis. Journal of Big Data, 6(1), 1-27.

    [26]  Dai,  Y.,  Xu,  D.,  Zhang,  K.,  Maharjan,  S.,  &  Zhang,  Y.  (2020).  Deep  reinforcement  learning  and permissioned  blockchain  for  content  caching  in  vehicular  edge  computing  and  networks. IEEE Transactions on Vehicular Technology, 69(4), 4312-4324.

    [27]  Xu,  S.,  Liu,  Q.,  Gong,  B.,  Qi,  F.,  Guo,  S.,  Qiu,  X.,  &  Yang,  C.  (2020).  RJCC:  Reinforcementlearning-based  joint  communicational-and-computational  resource  allocation  mechanism  for  smart city IoT. IEEE Internet of Things Journal, 7(9), 8059-8076.

    [28]  Cai, Z., Li, D., Deng, L., & Yao, X. (2021). Smart city framework based on intelligent sensor network and visual surveillance. Concurrency and Computation: Practice and Experience, 33(12), e5301.

    [29]  Cao, Z., Zhang, H., Cao, Y., & Liu, B. (2019, December). A deep reinforcement learning approach to multi-component job scheduling in edge computing. In 2019 15th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN) (pp. 19-24). IEEE.

    [30]  Alli, A. A., &Alam, M. M. (2019). SecOFF-FCIoT: Machine learning-based secure offloading in FogCloud of things for smart city applications. Internet of Things, 7, 100070.

    [31]  Park, J. H., Salim, M. M., Jo, J. H., Sicato, J. C. S., Rathore, S., & Park, J. H. (2019). CIoT -Net: a scalable  cognitive  IoT-based  smart  city  network  architecture. Human-centric  Computing  and Information Sciences, 9(1), 1-20.

    [32]  Alsudani, M.Q., Jaber, M.M., Ali, M.H., Abd, S.K., Alkhayyat, A., Kareem, Z.H. and Mohhan, A.R., 2023.  Smart  logistics  with  IoT-based  enterprise  management  system  using  global manufacturing. Journal of Combinatorial Optimization, 45(2), p.57.

     

    Cite This Article As :
    Hussein, Aymen. , Ahmed, S.. , K., Shorook. , Thamer, Noor. Enhancing IoT-Based Intelligent Video Surveillance through Multi-Sensor Fusion and Deep Reinforcement Learning. Fusion: Practice and Applications, vol. , no. , 2023, pp. 21-34. DOI: https://doi.org/10.54216/FPA.110202
    Hussein, A. Ahmed, S. K., S. Thamer, N. (2023). Enhancing IoT-Based Intelligent Video Surveillance through Multi-Sensor Fusion and Deep Reinforcement Learning. Fusion: Practice and Applications, (), 21-34. DOI: https://doi.org/10.54216/FPA.110202
    Hussein, Aymen. Ahmed, S.. K., Shorook. Thamer, Noor. Enhancing IoT-Based Intelligent Video Surveillance through Multi-Sensor Fusion and Deep Reinforcement Learning. Fusion: Practice and Applications , no. (2023): 21-34. DOI: https://doi.org/10.54216/FPA.110202
    Hussein, A. , Ahmed, S. , K., S. , Thamer, N. (2023) . Enhancing IoT-Based Intelligent Video Surveillance through Multi-Sensor Fusion and Deep Reinforcement Learning. Fusion: Practice and Applications , () , 21-34 . DOI: https://doi.org/10.54216/FPA.110202
    Hussein A. , Ahmed S. , K. S. , Thamer N. [2023]. Enhancing IoT-Based Intelligent Video Surveillance through Multi-Sensor Fusion and Deep Reinforcement Learning. Fusion: Practice and Applications. (): 21-34. DOI: https://doi.org/10.54216/FPA.110202
    Hussein, A. Ahmed, S. K., S. Thamer, N. "Enhancing IoT-Based Intelligent Video Surveillance through Multi-Sensor Fusion and Deep Reinforcement Learning," Fusion: Practice and Applications, vol. , no. , pp. 21-34, 2023. DOI: https://doi.org/10.54216/FPA.110202