Fusion: Practice and Applications

Journal DOI

https://doi.org/10.54216/FPA

Submit Your Paper

2692-4048ISSN (Online) 2770-0070ISSN (Print)

Volume 11 , Issue 1 , PP: 100-113, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

Multilevel Features Fusion of Intelligent Techniques for Brain Imaging Analysis

Talib A. Al-Sharify 1 * , Mohammed Hussein Ali 2 , Aqeel Hussen 3 , Zaid Saad Madhi 4

  • 1 Computer Communication Department, Al Rafidain University College, Baghdad, Iraq - (Talib.abdzaid.elc@ruc.edu.iq)
  • 2 Department of computer engineering techniques, Mazaya University college, Thi Qar, Iraq - (Mohammed.hussein@mpu.edu.iq)
  • 3 Department oof medical instrument engineering techniques, Alfarahidi University, Baghdad, Iraq - (Aqeel.hussen@alfarahidiuc.edu.iq)
  • 4 Radiological Techniques Department, Al- Mustaqbal University College, 51001 Hilla, Iraq - (zaid.saad@uomus.edu.iq)
  • Doi: https://doi.org/10.54216/FPA.110108

    Received: December 01, 2022 Accepted: March 18, 2023
    Abstract

    With the use of multi-level features fusion, this work provides a new method for recognizing cognitive brain activity, which we term the Improved Multi-modal cognitive brain-imaging method (IMCBI). Identifying brain areas and basing judgments on insights into intelligent cognitive behavior for babies and adolescents presents a number of methodological issues that the suggested approach seeks to address. In order to understand how the brain functions during various motor, perceptual, and cognitive tasks, IMCBI employs smart methods for fusing data at several levels. This technique employs functional magnetic resonance imaging (fMRI) data to assess human behavioral activity in the brain while engaging in a variety of activities. It does so by combining an inter-subject retrieval strategy with deep neural networks (DNN). The research shows that the suggested method, which uses multi-level fusion of features, greatly raises the accuracy ratio to 95.63 percent, the sensitivity to 95.42 percent, and the specificity to 94.3 three point three percent. The findings demonstrate the method's efficacy in recognizing brain activity based on high-level cognitive ability, making it a useful tool for predicting clinical and behavioral responses.

    Keywords :

    Cognitive intelligence , Multilevel Fusion brain imaging , Neuroimaging model , function MRI , brain activity recognition.

    References

    [1]  Mosconi  L,  Rahman  A,  Diaz  I,  Wu  X,  Scheyer  O,  Hristov  HW,  Vallabhajosula  S,  Isaacson  RS,  de Leon  MJ,  Brinton  RD.  Increased  Alzheimer’s  risk  during  the  menopause  transition:  A  3-year longitudinal brain imaging study. PloS one. 2018 Dec 12;13(12):e0207885.

    [2]  Sen B, Borle NC, Greiner R, Brown MR. A general prediction model for the detection of ADHD and Autism using structural and functional MRI. PloS one. 2018 Apr 17;13(4):e0194856.

    [3]  Bailey DM. Oxygen, evolution, and redox signaling in the human brain; quantum in the quotidian. The Journal of physiology. 2019 Jan;597(1):15-28.

    [4]  Sarkar  A,  Harty  S,  Lehto  SM,  Moeller  AH,  Dinan  TG,  Dunbar  RI,  Cryan  JF,  Burnet  PW.  The microbiome  in  psychology  and  cognitive  neuroscience.  Trends  in  cognitive  sciences.  2018  Jul 1;22(7):611-36.

    [5]  Sleurs C, Blommaert J, Batalle D, Verly M, Sunaert S, Peeters R, Lemiere J, Uyttebroeck A, Deprez S. Cortical  thinning  and  altered  functional  brain  coherence  in  survivors  of  childhood  sarcoma.  Brain imaging and behavior. 2020 Apr 25.

    [6]  Rahman,  A.U.,  Saeed,  M.,  Saeed,  M.H.,  Zebari,  D.A.,  Albahar,  M.,  Abdulkareem,  K.H.,  Al-Waisy, A.S. and Mohammed, M.A., 2023. A Framework for Susceptibility Analysis of Brain Tumours Based on Uncertain Analytical Cum Algorithmic Modeling. Bioengineering, 10(2), p.147.

    [7]  De Luca R, Leonardi S, Portaro S, Le Cause M, De Domenico C, Colucci PV, Pranio F, Bramanti P, Calabrò  RS.  Innovative  use  of  virtual  reality  in  autism  spectrum  disorder:  A  case  study.  Applied Neuropsychology: Child. 2019 May 15:1-1.

    [8]  Arahmane, H., Hamzaoui, E. M., Ben Maissa, Y., & Cherkaoui El Moursli, R. (2021). Neutron-gamma discrimination  method  based  on  blind  source  separation  and  machine  learning. Nuclear  Science  and Techniques, 32(2), 18.

    [9]  Devinsky O, Boesch JM, Cerda-Gonzalez S, Coffey B, Davis K, Friedman D, Hainline B, Houpt K, Lieberman D, Perry P, Prüss H. A cross-species approach to disorders affecting brain and behavior. Nature Reviews Neurology. 2018 Nov;14(11):677-86.

    [10]  Devi SS, Singh NH, Laskar RH. Fuzzy C-Means Clustering with Histogram based Cluster Selection for Skin  Lesion  Segmentation  using  Non-Dermoscopic  Images.  International  Journal  of  Interactive Multimedia and Artificial Intelligence. 2020;6(Special Issue on Soft Computing):26-31

    [11]  Champagne-Jorgensen  K,  Kunze  WA,  Forsythe  P,  Bienenstock  J,  Neufeld  KA.  Antibiotics  and  the nervous system: More than just the microbes?. Brain, Behavior, and Immunity. 2019 Mar 1;77:7 -15.

    [12]  Gomathi,  P.,  Baskar,  S.,  Shakeel,  P.  M.,  &  Dhulipala,  V.  S.  (2020).  Identifying  brain abnormalities from electroencephalogram using evolutionary gravitational neocognitron neural network.  Multimedia Tools and Applications, 79(15), 10609-10628. https://doi.org/10.1007/s11042-019-7301-5

    [13]  Coenen  A,  Nelson  JD,  Gureckis  TM.  Asking  the  right  questions  about  the  psychology  of  human inquiry: Nine open challenges. Psychonomic Bulletin & Review. 2019 Oct 1;26(5):1548-87.

    [14]  Rana Talib Rasheed, Mostafa Abdulgafoor Mohammed, & Nicolae Tapus. (2021). Big data analysis . Mesopotamian Journal of Big Data, 2021, 22–25. https://doi.org/10.58496/MJBD/2021/004

    [15]  Torlasco C, Bilo G, Giuliano A, Soranna D, Ravaro S, Oliverio G, Faini A, Zambon A, Lombardi C, Parati G. Effects of acute exposure to moderate altitude on blood pressure and sleep breathing patterns. International Journal of Cardiology. 2020 Feb 15;301:173-9.

    [16]  Hässler  T,  Shnabel  N,  Ullrich  J,  Arditti-Vogel  A,  SimanTov-Nachlieli  I.  Individual  differences  insystem justification predict power and morality-related needs in advantaged and disadvantaged groups in response to group disparity. Group Processes & Intergroup Relations. 2019 Aug;22(5):746 -66.

    [17]  Worthman CM, Trang K. Dynamics of body time, social time, and life history at adolescence. Nature. 2018 Feb;554(7693):451-7.

    [18]  Bebbington J, Unerman J. Achieving the United Nations sustainable development goals. Accounting, Auditing & Accountability Journal. 2018 Jan 15.

    [19]  Zhu Q, Zhu J, Liu M, Xu X, Zhang D. Multi-Region Correlation Based Functional Brain Network for Disease Diagnosis and Cognitive States Detection. IEEE Access. 2018 Dec 4;6:78065-76. 

    [20]  Shulman  RG,  Rothman  DL.  A  non-cognitive  behavioral  model  for  interpreting  functional neuroimaging studies. Frontiers in human neuroscience. 2019 Mar 11;13:28.

    [21]  Annavarapu  RN,  Kathi  S,  Vadla  VK.  Non-invasive  imaging  modalities  to  study  neurodegenerative diseases of the aging brain. Journal of chemical neuroanatomy. 2019 Jan 1;95:54-69.

    [22]  Wang Z, Zheng Y, Zhu DC, Bozoki AC, Li  T. Classification of Alzheimer’s disease, mild cognitive impairment, and stock control subjects using resting -state fMRI based network connectivity analysis. IEEE journal of translational engineering in health and medicine. 2018 Oct 15;6:1 -9.

    [23]  Ung WC, Yap KH, Ebenezer EG, Chin PS, Nordin N, Chan SC, Yip HL, Lu CK, Kiguchi M, Tang TB. Assessing  Neural  Compensation  With  Visuospatial  Working  Memory  Load  Using  Near-Infrared Imaging.  IEEE  Transactions  on  Neural  Systems  and  Rehabilitation  Engineering.  2019  Nov 28;28(1):13-22.

    [24]  Porras AR, Paniagua B, Ensel S, Keating R, Rogers GF, Enquobahrie A, Linguraru MG. Locally affine diffeomorphic  surface  registration  and  its  application  to  surgical  planning  of  frontal-orbital advancement. IEEE transactions on medical imaging. 2018 Mar 15;37(7):1690-700.

    [25]  Hu W, Cai B, Zhang A, Calhoun VD, Wang YP. Deep collaborative learning with application to the study  of  multi-modal  brain  development.  IEEE  Transactions  on  Biomedical  Engineering.  2019  Mar 13;66(12):3346-59.

    [26]  https://www.kaggle.com/tags/neuroscience

    [27]  Kurdi, S.Z., Ali, M.H., Jaber, M.M., Saba, T., Rehman, A. and Damaševičius, R., 2023. Brain Tumor Classification  Using  Meta-Heuristic  Optimized  Convolutional  Neural  Networks. Journal  of Personalized Medicine, 13(2), p.181.

    [28]  Ali, M.H., Jaber, M.M., Abd, S.K., Alkhayyat, A. and Jasim, A.D., 2022. Artificial Neural NetworkBased  Medical  Diagnostics  and  Therapeutics. International  Journal  of  Pattern  Recognition  and Artificial Intelligence.

    [29]  Adnan,  M.M.,  Rahim,  M.S.M.,  Al-Jawaheri,  K.,  Ali,  M.H.,  Waheed,  S.R.  and  Radie,  A.H.,  2020, September.  A  survey  and  analysis  on  image  annotation.  In 2020  3rd  International  Conference  on Engineering Technology and its Applications (IICETA) (pp. 203-208). IEEE.

    Cite This Article As :
    A., Talib. , Hussein, Mohammed. , Hussen, Aqeel. , Saad, Zaid. Multilevel Features Fusion of Intelligent Techniques for Brain Imaging Analysis. Fusion: Practice and Applications, vol. , no. , 2023, pp. 100-113. DOI: https://doi.org/10.54216/FPA.110108
    A., T. Hussein, M. Hussen, A. Saad, Z. (2023). Multilevel Features Fusion of Intelligent Techniques for Brain Imaging Analysis. Fusion: Practice and Applications, (), 100-113. DOI: https://doi.org/10.54216/FPA.110108
    A., Talib. Hussein, Mohammed. Hussen, Aqeel. Saad, Zaid. Multilevel Features Fusion of Intelligent Techniques for Brain Imaging Analysis. Fusion: Practice and Applications , no. (2023): 100-113. DOI: https://doi.org/10.54216/FPA.110108
    A., T. , Hussein, M. , Hussen, A. , Saad, Z. (2023) . Multilevel Features Fusion of Intelligent Techniques for Brain Imaging Analysis. Fusion: Practice and Applications , () , 100-113 . DOI: https://doi.org/10.54216/FPA.110108
    A. T. , Hussein M. , Hussen A. , Saad Z. [2023]. Multilevel Features Fusion of Intelligent Techniques for Brain Imaging Analysis. Fusion: Practice and Applications. (): 100-113. DOI: https://doi.org/10.54216/FPA.110108
    A., T. Hussein, M. Hussen, A. Saad, Z. "Multilevel Features Fusion of Intelligent Techniques for Brain Imaging Analysis," Fusion: Practice and Applications, vol. , no. , pp. 100-113, 2023. DOI: https://doi.org/10.54216/FPA.110108