Fusion: Practice and Applications

Journal DOI

https://doi.org/10.54216/FPA

Submit Your Paper

2692-4048ISSN (Online) 2770-0070ISSN (Print)

Volume 10 , Issue 2 , PP: 95-107, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

Text and Social Analytics with Fusion Techniques Enhance Hospital Health Management

Rana K. A. Ahmed 1 * , Ryham Ali Zubaid 2 , Fay Fadhil 3 , Israa Habeeb Naser 4

  • 1 Department of Computer Techniques Engineering, Al-Rafidain University College, Baghdad 10064, Iraq - (rana.abbas@ruc.edu.iq)
  • 2 Department of computer engineering techniques, Mazaya University college, Thi Qar, Iraq - ( eng.co.riham@mpu.edu.iq)
  • 3 Department of Medical device technology Engineering, Alfarahidi University, Baghdad, Iraq - (fay.fadhil@alfarahidiuc.edu.iq)
  • 4 Medical Laboratories Techniques Department, AL-Mustaqbal University College, 51001 Hillah, Babil, Iraq - (israa.habbeb@uomus.edu.iq)
  • Doi: https://doi.org/10.54216/FPA.100209

    Received: November 20, 2022 Accepted: March 10, 2023
    Abstract

    the impact of social analytics on hospital health management: a multilevel fusion approach for data-driven decision-making and brand improvement. The hospital health management center should use feature extraction techniques to learn more about customers' feelings towards their services and optimize their business strategies and promotions accordingly. The proposed multi-level/hybrid level fusion system architectures can effectively integrate data/images from multiple sources, including social networks, to collect and process essential data for score level and rank level decision-making. This approach leverages intelligent techniques, such as deep learning models, fuzzy logic, and optimization algorithms, to improve fusion scores and achieve optimal fusion performance. The proposed framework can also be extended to various applications, including multimedia data fusion, e-systems data fusion, and spatial data fusion, to enable intelligent systems for information fusion and decision-making in diverse domains. Therefore, this paper proposes Improved Customer Relation and Business Operations (ICR-BO) to enhance customer relationships in business development using text and social analytics. A case study is carried out to explore the online debate of computer brands operated in hospital environments and Twitter suppliers. The authors used text-mining strategies and social analytics to analyze business operations. Social Media uses data sets to view important observations and trends to identify consumer awareness after collecting critical tweets using Twitter search. The experimental results show that ICR-BO achieves the highest customer relation compared to other existing methods.

    Keywords :

    Business Operations , Customer , Health Management , Fusion techniques , Social Analytics , Text Multilevel Fusion.

    References

    [1]  Wang, Y., Kung, L., & Byrd, T. A. (2018). Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technological Forecasting and Social Change, 126, 3-13.

    [2]  Gupta, A., Deokar, A., Iyer, L., Sharda, R., & Schrader, D. (2018). Big data & analytics for societal impact: Recent research and trends. Information Systems Frontiers, 20(2), 185-194. 

    [3]  Hogle, L. F. (2019). Accounting for accountable care: Value-based population health management. Social Studies of Science, 49(4), 556-582.

    [4]  Wang, C. S., Lin, S. L., Chou, T. H., & Li, B. Y. (2019). An integrated data analytics process to optimize data governance of the non-profit organization. Computers in Human Behavior, 101, 495-505.

    [5]  Araz,  O.  M.,  Choi,  T.  M.,  Olson,  D.  L.,  &  Salman,  F.  S.  (2020).  Role  of  analytics  for  operational  risk management in the era of big data. Decision Sciences, 51(6), 1320-1346.

    [6]  Nguyen, V. C., & Kostarakis, P. (2018). The impact of green systems and signals on the health of green residences' habitants. Annals of General Psychiatry, 17(1), A12.

    [7]  Jaber, M.M., Ali,  M.H., Abd, S.K., Jassim, M.M., Alkhayyat, A., Aziz, H.W. and Alkhuwaylidee, A.R., 2022.  Predicting  climate  factors  based  on  big  data  analytics  based  agricultural  disaster management. Physics and Chemistry of the Earth, Parts A/B/C, 128, p.103243.

    [8]  Mijwil,  M.,  Mohammad  Aljanabi,  &  Ahmed  Hussein  Ali.  (2023).  ChatGPT:  Exploring  the  Role  of Cybersecurity in the Protection of Medical Information . Mesopotamian Journal of CyberSecurity, 2023, 18–21. https://doi.org/10.58496/MJCS/2023/004

    [9]  Wang, Y., Kung, L. and Byrd, T.A., 2018. Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technological forecasting and social change, 126, pp.3-13.

    [10]  Galetsi,  P.,  Katsaliaki,  K.  and  Kumar,  S.,  2019.  Values,  challenges  and  future  directions  of  big  data analytics in healthcare: A systematic review. Social science & medicine, 241, p.112533.

    [11]  Tate,  W.L.,  Ellram,  L.M.  and  Kirchoff,  J.F.,  2010.  Corporate  social  responsibility  reports:  a  thematic analysis related to supply chain management. Journal of supply chain management, 46(1), pp.19-44.

    [12]  Kadry, S., Bagdasaryan, A., & Kadhum, M. (2017, April). Simulation and analysis of staff scheduling in hospitality  management.  In 2017  7th  International  Conference  on  Modeling,  Simulation,  and  Applied Optimization (ICMSAO) (pp. 1-6). IEEE.

    [13]  Oueida, S., Kadry, S., & Ionescu, S. (2020). Estimating key performance indicators of a new emergency department  model.  In Hospital  Management  and  Emergency  Medicine:  Breakthroughs  in  Research  and Practice (pp. 580-598). IGI Global.

    [14]  Chang,  S.,  Hsieh,  P.  J.,  &  Chen,  H.  F.  (2012,  August).  Comparing  physician  and  hospital  manager perceptions  of  medical  knowledge  management  systems  success.  In 2012  International  Symposium  on Information Technologies in Medicine and Education (Vol. 2, pp. 704-708). IEEE.

    [15]  Cheng,  J.  S.,  Ku,  H.  P.,  &  Chang,  C.  J.  (2014).  Patterns  and  Predictors  of  Hospital  Readmission  in Taiwan. Value in Health, 17(7), A424.

    [16]  Rani, S., Ahmed, S. H., & Shah, S. C. (2018). Smart health: A novel paradigm to control the chikungunya virus. IEEE Internet of Things Journal, 6(2), 1306-1311.

    [17]  Amari, A., Ali, M.H., Jaber, M.M., Spalevic, V. and Novicevic, R., 2022. Study of Membranes with Nanotubes to Enhance Osmosis Desalination Efficiency by Using Machine Learning towards Sustainable Water Management. Membranes, 13(1), p.31.

    [18]  He,  D.,  Kumar,  N.,  Chen,  J.,  Lee,  C.  C.,  Chilamkurti,  N.,  &  Yeo,  S.  S.  (2015).  Robust  anonymous authentication  protocol  for  healthcare  applications  using  wireless  medical  sensor  networks. Multimedia Systems, 21(1), 49-60.

    [19]  Alsudani, M.Q., Jaber, M.M., Ali, M.H., Abd, S.K., Alkhayyat, A., Kareem, Z.H. and Mohhan, A.R., 2023. Smart logistics with IoT-based enterprise management system using global manufacturing. Journal of Combinatorial Optimization, 45(2), p.57.

    [20]  Elhoseny, M., Abdelaziz, A., Salama, A. S., Riad, A. M., Muhammad, K., & Sangaiah, A. K. (2018). A hybrid  model  of  the  internet  of  things  and  cloud  computing  to  manage  big  data  in  health  services applications. Future generation computer systems, 86, 1383-1394.

    [21]  Grover, V., Chiang, R. H., Liang, T. P., & Zhang, D. (2018). Creating strategic business value from big data analytics: A research framework. Journal of Management Information Systems, 35(2), 388-423.

    [22]  Wang, Y., Kung, L., Wang, W. Y. C., & Cegielski, C. G. (2018). An integrated big data analytics-enabled transformation model: Application to health care.  Information & Management, 55(1), 64-79.

    [23]  Wang, Y., Kung, L., Gupta, S., & Ozdemir, S. (2019). Leveraging big data analytics to improve quality of care in healthcare organizations: A configurational perspective. British Journal of Management, 30(2), 362-388.

    [24]  Predmore, Z., Hatef, E., & Weiner, J. P. (2019). Integrating social and behavioral determinants of health into  population  health  analytics:  a  conceptual  framework  and  suggested  road  map.  Population  health management, 22(6), 488-494.

    [25]  López-Martínez, F., Núñez-Valdez, E. R., García-Díaz, V., & Bursac, Z. (2020). A case study for a big data and  machine  learning  platform  to  improve  medical  decision  support  in  population  health management. Algorithms, 13(4), 102. 

    [26]   Ko, A., & Gillani, S. (2020). A research review and taxonomy development for decision support and business  analytics  using  semantic  text  mining. International  Journal  of  Information  Technology  &  Decision Making, 19(01), 97-126.

    Cite This Article As :
    K., Rana. , Ali, Ryham. , Fadhil, Fay. , Habeeb, Israa. Text and Social Analytics with Fusion Techniques Enhance Hospital Health Management. Fusion: Practice and Applications, vol. , no. , 2023, pp. 95-107. DOI: https://doi.org/10.54216/FPA.100209
    K., R. Ali, R. Fadhil, F. Habeeb, I. (2023). Text and Social Analytics with Fusion Techniques Enhance Hospital Health Management. Fusion: Practice and Applications, (), 95-107. DOI: https://doi.org/10.54216/FPA.100209
    K., Rana. Ali, Ryham. Fadhil, Fay. Habeeb, Israa. Text and Social Analytics with Fusion Techniques Enhance Hospital Health Management. Fusion: Practice and Applications , no. (2023): 95-107. DOI: https://doi.org/10.54216/FPA.100209
    K., R. , Ali, R. , Fadhil, F. , Habeeb, I. (2023) . Text and Social Analytics with Fusion Techniques Enhance Hospital Health Management. Fusion: Practice and Applications , () , 95-107 . DOI: https://doi.org/10.54216/FPA.100209
    K. R. , Ali R. , Fadhil F. , Habeeb I. [2023]. Text and Social Analytics with Fusion Techniques Enhance Hospital Health Management. Fusion: Practice and Applications. (): 95-107. DOI: https://doi.org/10.54216/FPA.100209
    K., R. Ali, R. Fadhil, F. Habeeb, I. "Text and Social Analytics with Fusion Techniques Enhance Hospital Health Management," Fusion: Practice and Applications, vol. , no. , pp. 95-107, 2023. DOI: https://doi.org/10.54216/FPA.100209