Fusion: Practice and Applications

Journal DOI

https://doi.org/10.54216/FPA

Submit Your Paper

2692-4048ISSN (Online) 2770-0070ISSN (Print)

Volume 10 , Issue 1 , PP: 143-155, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

Fusion Processing Techniques and Bio-inspired Algorithm for E-Communication and Knowledge Transfer

Omar Saad Ahmed 1 * , Fay Fadhil 2 , Laith H. Jasim Alzubaidi 3 , Riyadh Al-Obaidi 4

  • 1 Al-Turath University College, Baghdad, 10021, Iraq - (omar.saad@turath.edu.iq)
  • 2 Department of Computer Techniques Engineering, Al-Rafidain University College, Baghdad 10064, Iraq - (rana.abbas@ruc.edu.iq)
  • 3 Department of Medical device technology Engineering, Alfarahidi University, Baghdad, Iraq - (fay.fadhil@alfarahidiuc.edu.iq)
  • 4 Department of Business Administration, Al- Mustaqbal University College, Babylon 51001, Iraq - (raidh.h.salman@uomus.edu.iq)
  • Doi: https://doi.org/10.54216/FPA.100109

    Received: June 18, 2022 Accepted: November 12, 2022
    Abstract

    This study suggests employing a dynamic natural and bio-inspired algorithm (DNBIA) to strengthen the confidentiality, integrity, and availability of digital information exchanges. You may think of the suggested method as a clever approach to Fusion Processing. Fusion Processing is the practice of combining and analyzing information from many databases. The efficiency and reaction time of e-communication systems may be increased by the use of the suggested DNBIA algorithm, which processes and integrates data from different sources. It is also possible to see the multi-objective optimization study presented in this work as a type of Fusion Processing. Cyberattacks and other types of computer security risks are the focus of this study, which seeks to optimize numerous objectives concurrently in order to eliminate them. The study can give a complete solution to improve the security of e-communication systems by combining different goals. The suggested method of enhancing e-communication and information transmission using DNBIA and multi-objective optimization analysis can be seen as a type of Fusion Processing. Efficient e-communication systems may be achieved by collecting data from a variety of sources and analyzing the results.

    Keywords :

    E-Communication , Knowledge Transfer , Natural , Fusion Processing , Bio-Inspired Algorithms.

    References

    [1]  Byrne,  J.,  &  Kirwan,  G.  (2019).  Relationship-based  social  work  and  electronic  communication technologies: anticipation, adaptation and achievement.  Journal of Social Work Practice, 33(2), 217-232.

    [2]  Mijwil,  M.,  Youssef  Filali,  Mohammad  Aljanabi,  Mariem  Bounabi,  Humam  Al-Shahwani,  & ChatGPT. (2023). The Purpose of Cybersecurity Governance in the Digital Transformation of Public Services and Protecting the Digital Environment. Mesopotamian Journal of CyberSecurity, 2023, 1–6. https://doi.org/10.58496/MJCS/2023/001

    [3]  Navarro‐Millán, I., Zinski, A., Shurbaji, S., Johnson, B., Fraenkel, L., Willig, J., ... & Safford, M. M. (2019). Perspectives of rheumatoid arthritis patients on electronic communication and patient‐reported outcome data collection: a qualitative study. Arthritis care & research, 71(1), 80-87.

    [4]  Khan, F., Jan, M. A., Rehman, A. U., Mastorakis, S., Alazab, M., & Watters, P. (2020). A Secured and Intelligent  Communication  Scheme  for IIoT-enabled  Pervasive  Edge  Computing.  IEEE  Transactions on Industrial Informatics.

    [5]  Brundin-Mather,  R.,  Zjadewicz,  K.,  Soo,  A.,  &  Stelfox,  H.  T.  (2020).  Improving  transitions  in  care from  intensive  care  units:  Development  and  pilot  testing  of  an  electronic  communication  tool  for healthcare providers. Journal of critical care, 56, 265-272.

    [6]  Kadry, S., & Barbar, A. (2009). Design of secure mobile communication using fingerprint. European Journal of Scientific Research, 30(1), 138-145.

    [7]  Krynski,  L.,  Ghersin,  S.,  Del  Valle,  M.,  &  Cardigni,  G.  (2019).  Communication  through  electronic media in pediatrics. Use recommendations. Archivos argentinos de pediatria, 117(4), S175-S179.

    [8]  Ahmad, I. S., Kalakech, A., & Kadry, S. (2014). Modified Binary Exponential Backoff Algorithm to Minimize Mobiles Communication Time. IJ Information Technology and Computer Science, 3, 20-29.

    [9]  Liu, J., Wan, J., Jia, D., Zeng, B., Li, D., Hsu, C. H., & Chen, H. (2017). High -efficiency urban traffic management  in context-aware computing and 5G communication. IEEE Communications Magazine, 55(1), 34-40.

    [10]  Hsu,  C.  H.,  Slagter,  K.  D.,  &  Chung,  Y.  C.  (2015).  Locality  and  loading  aware  virtual  machine mapping  techniques  for  optimizing  communications  in  MapReduce  applications.  Future  Generation Computer Systems, 53, 43-54.

    [11]  Ali,  A.  H.,  Mohanad  G.  Yaseen,  Mohammad  Aljanabi,  Saad  Abbas  Abed,  &  ChatGPT.  (2023). Transfer Learning: A New Promising Techniques. Mesopotamian Journal of Big Data, 2023, 31–32. https://doi.org/10.58496/MJBD/2023/004

    [12]  Hasnat, M.A., Akbar, M., Iqbal, Z., Khan, Z.A., Qasim, U. and Javaid, N., 2015, February. Bio inspired distributed energy efficient  clustering for Wireless Sensor Networks. In 2015 5th National Symposium on Information Technology: Towards New Smart World (NSITNSW) (pp. 1-7). IEEE.

    [13]  Chituc, C.M. and de Oliveira Restivo, F.J., 2009. Challenges and Trends in Distributed Manufacturing Systems: Are wise engineering systems the ultimate answer?. In Second MIT International Symposium on Engineering Systems.

    [14]  Kumar,  N.,  &  Lee,  J.  H.  (2013).  Peer-to-peer  cooperative  caching  for  data  dissemination  in  urban vehicular communications. IEEE Systems Journal, 8(4), 1136-1144.

    [15]  Chaudhary,  R.,  Aujla,  G.  S.,  Garg,  S.,  Kumar,  N.,  &  Rodrigues,  J.  J.  (2018).  SDN-enabled  multiattribute-based  secure  communication  for  smart  grid  in  IIoT  environment.  IEEE  Transactions  on Industrial Informatics, 14(6), 2629-2640. 

    [16]  Dua, A., Kumar, N., Das, A. K., & Susilo, W. (2017). Secure message communication protocol among vehicles in smart city. IEEE Transactions on Vehicular Technology, 67(5), 4359-4373.

    [17]  Mahmoud,  E.  E.,  &  AL-Harthi,  B.  H.  (2019).  Secure  communications  via  modified  complex  phase synchronization of two hyperchaotic complex models with identical linear structure and adjusting in nonlinear terms. Journal of Intelligent & Fuzzy Systems, 37(1), 17-25.

    [18]  Li,  J., Zhao, H., Hafid, A.S., Wei, J., Yin, H. and Ren, B., 2019. A  bio-inspired solution to clusterbased  distributed  spectrum  allocation  in  high-density  cognitive  Internet  of  Things. IEEE  Internet  of Things Journal, 6(6), pp.9294-9307.

    [19]  Gaona-García, P., Mendoza, D., Vargas, F., & Montenegro-Marin, C. (2019). Evaluation of a Medical Alert  Communication  Infrastructure  Based  on  Fuzzy  Logic  and  IoT  Devices.  Advanced  Science Letters, 25(1), 21-24.

    [20]  Alqahtani,  F.,  Al-Makhadmeh,  Z.,  Tolba,  A.,  &  Said,  O.  (2020).  TBM:  A  trust-based  monitoring security  scheme  to  improve  the  service  authentication  in  the  Internet  of  Things communications. Computer Communications, 150, 216-225.

    [21]  Sharmeen, S., Huda, S., Abawajy, J., & Hassan, M. M. (2020). An adaptive framework against android privilege  escalation  threats  using  deep  learning  and  semi-supervised  approaches. Applied  Soft Computing, 89, 106089.

    [22]  Jaber, M.M., Ali, M.H., Abd, S.K., Jassim, M.M., Alkhayyat, A., Alreda, B.A., Alkhuwaylidee, A.R. and  Alyousif,  S.,  2022.  A  Machine  Learning-Based  Semantic  Pattern  Matching  Model  for  Remote Sensing Data Registration. Journal of the Indian Society of Remote Sensing, pp.1-14.

    [23]  Al  Ridhawi,  I.,  Otoum,  S.,  Aloqaily,  M.,  Jararweh,  Y.,  &  Baker,  T.  (2020).  Providing  secure  and reliable communication for next generation networks in smart  cities. Sustainable Cities and Society, 56, 102080.

    Cite This Article As :
    Saad, Omar. , Fadhil, Fay. , H., Laith. , Al-Obaidi, Riyadh. Fusion Processing Techniques and Bio-inspired Algorithm for E-Communication and Knowledge Transfer. Fusion: Practice and Applications, vol. , no. , 2023, pp. 143-155. DOI: https://doi.org/10.54216/FPA.100109
    Saad, O. Fadhil, F. H., L. Al-Obaidi, R. (2023). Fusion Processing Techniques and Bio-inspired Algorithm for E-Communication and Knowledge Transfer. Fusion: Practice and Applications, (), 143-155. DOI: https://doi.org/10.54216/FPA.100109
    Saad, Omar. Fadhil, Fay. H., Laith. Al-Obaidi, Riyadh. Fusion Processing Techniques and Bio-inspired Algorithm for E-Communication and Knowledge Transfer. Fusion: Practice and Applications , no. (2023): 143-155. DOI: https://doi.org/10.54216/FPA.100109
    Saad, O. , Fadhil, F. , H., L. , Al-Obaidi, R. (2023) . Fusion Processing Techniques and Bio-inspired Algorithm for E-Communication and Knowledge Transfer. Fusion: Practice and Applications , () , 143-155 . DOI: https://doi.org/10.54216/FPA.100109
    Saad O. , Fadhil F. , H. L. , Al-Obaidi R. [2023]. Fusion Processing Techniques and Bio-inspired Algorithm for E-Communication and Knowledge Transfer. Fusion: Practice and Applications. (): 143-155. DOI: https://doi.org/10.54216/FPA.100109
    Saad, O. Fadhil, F. H., L. Al-Obaidi, R. "Fusion Processing Techniques and Bio-inspired Algorithm for E-Communication and Knowledge Transfer," Fusion: Practice and Applications, vol. , no. , pp. 143-155, 2023. DOI: https://doi.org/10.54216/FPA.100109