Fusion: Practice and Applications

Journal DOI

https://doi.org/10.54216/FPA

Submit Your Paper

2692-4048ISSN (Online) 2770-0070ISSN (Print)

Volume 11 , Issue 1 , PP: 89-99, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

Crime Anomaly Detection using CNN and Ensemble Model

Gautam Gupta 1 * , Prachi Aggarwal 2 , Achin Jain 3 , Puneet Singh Lamba 4 , Arun Kumar Dubey 5 , Gopal Chaudhary 6

  • 1 Bharati Vidyapeeth's College of Engineering, India - (gautamgupta1811@gmail.com)
  • 2 Bharati Vidyapeeth's College of Engineering, India - (prachiaggarwal476@gmail.com)
  • 3 Bharati Vidyapeeth's College of Engineering, India - (achin.mails@gmail.com)
  • 4 VIPS-TC, School of Engineering and Technology, India - (singhs.puneet@gmail.com)
  • 5 Bharati Vidyapeeth's College of Engineering, India - (arudubey@gmail.com)
  • 6 VIPS-TC, School of Engineering and Technology, India - (gopal.chaudhary88@gmail.com)
  • Doi: https://doi.org/10.54216/FPA.110107

    Received: December 08, 2022 Accepted: March 28, 2023
    Abstract

    Every single day, thousands of crimes are perpetrated, and hundreds may be probably taking place right now throughout the world. Without a doubt, crime is viewed as a social blight. Nothing can truly stop it, no matter what is done. Surveillance cameras, on the other hand, can dramatically minimize it. Using public surveillance camera systems to prevent, document, and minimize crime can be a cost-effective solution. Installing enough cameras to detect crimes in progress and integrating technology to automate the monitoring of the live stream from these cameras will result in the most effective systems. Because of its self-learning characteristics, the advanced Artificial Intelligence surveillance system is constantly learning and improving. The Deep Learning Algorithms applied in this work processes videos using electronic devices like cameras in real-time termed as image processing, saving both human resources and a great deal of time. The highest accuracy of 86.6% was attained by Ensemble Model, followed by Inception Model with SGD Optimizer, Leaky Relu Activation Function giving an accuracy of 83.43%. Hence, anomalies were detected efficiently using decision making in real-time surveillance scenarios.  

    Keywords :

    Anomaly Detection , CNN , Ensemble Model , Deep Learning

    References

    [1]    Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

    [2]    Dubey, A. K., & Jain, V. (2019). Comparative study of convolution neural network’s relu and leaky-relu activation functions. In Applications of Computing, Automation and Wireless Systems in Electrical Engineering: Proceedings of MARC 2018 (pp. 873-880). Springer Singapore.

    [3]    Lydia, A., & Francis, S. (2019). Adagrad—an optimizer for stochastic gradient descent. Int. J. Inf. Comput. Sci, 6(5), 566-568.

    [4]    Ullah, W., Ullah, A., Hussain, T., Khan, Z. A., & Baik, S. W. (2021). An efficient anomaly recognition framework using an attention residual LSTM in surveillance videos. Sensors, 21(8), 2811.

    [5]    Sharma, S., Sharma, S., & Athaiya, A. (2017). Activation functions in neural networks. Towards Data Sci, 6(12), 310-316.

    [6]    Mohammadi, S., Perina, A., Kiani, H., & Murino, V. (2016). Angry crowds: Detecting violent events in videos. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part VII 14 (pp. 3-18). Springer International Publishing.

    [7]    Kamijo, S., Matsushita, Y., Ikeuchi, K., & Sakauchi, M. (2000). Traffic monitoring and accident detection at intersections. IEEE transactions on Intelligent transportation systems, 1(2), 108-118.

    [8]    Andrews, S., Tsochantaridis, I., & Hofmann, T. (2002). Support vector machines for multiple instance learning. Advances in neural information processing systems, 15.

    [9]    Kooij, J. F., Liem, M. C., Krijnders, J. D., Andringa, T. C., & Gavrila, D. M. (2016). Multi-modal human aggression detection. Computer Vision and Image Understanding, 144, 106-120.

    [10]  Giannakopoulos, T., Makris, A., Kosmopoulos, D., Perantonis, S., & Theodoridis, S. (2010). Audio-visual fusion for detecting violent scenes in videos. In Artificial Intelligence: Theories, Models and Applications: 6th Hellenic Conference on AI, SETN 2010, Athens, Greece, May 4-7, 2010. Proceedings 6 (pp. 91-100). Springer Berlin Heidelberg.

    [11]  Kim, J., Nguyen, A. D., & Lee, S. (2018). Deep CNN-based blind image quality predictor. IEEE transactions on neural networks and learning systems, 30(1), 11-24.

    [12]  Kwon, D., Natarajan, K., Suh, S. C., Kim, H., & Kim, J. (2018, July). An empirical study on network anomaly detection using convolutional neural networks. In 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS) (pp. 1595-1598). IEEE.

    [13]  Vinayakumar, R., Soman, K. P., & Poornachandran, P. (2017, September). Long short-term memory-based operation log anomaly detection. In 2017 International Conference on Advances in Computing, Communications, and Informatics (ICACCI) (pp. 236-242). IEEE.

    [14]  Pang, S., Ban, T., Kadobayashi, Y., Song, J., Huang, K., Poh, G., ... & Aloul, F. (2020). CDMC’19—The 10th International Cybersecurity Data Mining Competition. In Neural Information Processing: 27th International Conference, ICONIP 2020, Bangkok, Thailand, November 23–27, 2020, Proceedings, Part II 27 (pp. 235-245). Springer International Publishing.

    [15]  Sultani, W., Chen, C., & Shah, M. (2018). Real-world anomaly detection in surveillance videos. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6479-6488).

    [16]  Landi, F., Snoek, C. G., & Cucchiara, R. (2019). Anomaly locality in video surveillance. arXiv preprint arXiv:1901.10364.

    [17]  He, C., Shao, J., & Sun, J. (2018). An anomaly-introduced learning method for abnormal event detection. Multimedia Tools and Applications, 77, 29573-29588.

    [18]  Dubey, A. K., & Jain, V. (2020). Automatic facial recognition using VGG16 based transfer learning model. Journal of Information and Optimization Sciences, 41(7), 1589-1596.

    [19]  Mahadevan, V., Li, W., Bhalodia, V., & Vasconcelos, N. (2010, June). Anomaly detection in crowded scenes. In 2010 IEEE computer society conference on computer vision and pattern recognition (pp. 1975-1981). IEEE.

    [20]  Thakare, K. V., Sharma, N., Dogra, D. P., Choi, H., & Kim, I. J. (2022). A multi-stream deep neural network with late fuzzy fusion for real-world anomaly detection. Expert Systems with Applications, 201, 117030.

    [21]  Yi, S., Fan, Z., & Wu, D. (2022). Batch feature standardization network with triplet loss for weakly-supervised video anomaly detection. Image and Vision Computing, 120, 104397.

    [22]  Zaheer, M. Z., Lee, J. H., Astrid, M., Mahmood, A., & Lee, S. I. (2021). Cleaning label noise with clusters for minimally supervised anomaly detection. arXiv preprint arXiv:2104.14770.

    [23]  Zhong, J. X., Li, N., Kong, W., Liu, S., Li, T. H., & Li, G. (2019). Graph convolutional label noise cleaner: Train a plug-and-play action classifier for anomaly detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 1237-1246).

    [24]  Rahman, M. M., Afrin, M. S., Atikuzzaman, M., & Rahaman, M. A. (2021, December). Real-Time Anomaly Detection and Classification from Surveillance Cameras Using Deep Neural Network. In 2021 3rd International Conference on Sustainable Technologies for Industry 4.0 (STI) (pp. 1-6). IEEE.

    Cite This Article As :
    Gupta, Gautam. , Aggarwal, Prachi. , Jain, Achin. , Singh, Puneet. , Kumar, Arun. , Gopal, . Crime Anomaly Detection using CNN and Ensemble Model. Fusion: Practice and Applications, vol. , no. , 2023, pp. 89-99. DOI: https://doi.org/10.54216/FPA.110107
    Gupta, G. Aggarwal, P. Jain, A. Singh, P. Kumar, A. Gopal, . (2023). Crime Anomaly Detection using CNN and Ensemble Model. Fusion: Practice and Applications, (), 89-99. DOI: https://doi.org/10.54216/FPA.110107
    Gupta, Gautam. Aggarwal, Prachi. Jain, Achin. Singh, Puneet. Kumar, Arun. Gopal, . Crime Anomaly Detection using CNN and Ensemble Model. Fusion: Practice and Applications , no. (2023): 89-99. DOI: https://doi.org/10.54216/FPA.110107
    Gupta, G. , Aggarwal, P. , Jain, A. , Singh, P. , Kumar, A. , Gopal, . (2023) . Crime Anomaly Detection using CNN and Ensemble Model. Fusion: Practice and Applications , () , 89-99 . DOI: https://doi.org/10.54216/FPA.110107
    Gupta G. , Aggarwal P. , Jain A. , Singh P. , Kumar A. , Gopal . [2023]. Crime Anomaly Detection using CNN and Ensemble Model. Fusion: Practice and Applications. (): 89-99. DOI: https://doi.org/10.54216/FPA.110107
    Gupta, G. Aggarwal, P. Jain, A. Singh, P. Kumar, A. Gopal, . "Crime Anomaly Detection using CNN and Ensemble Model," Fusion: Practice and Applications, vol. , no. , pp. 89-99, 2023. DOI: https://doi.org/10.54216/FPA.110107