Volume 11 , Issue 1 , PP: 08-25, 2023 | Cite this article as | XML | Html | PDF | Review Article
Huda Ghazi Enad 1 * , Mazin Abed Mohammed 2
Doi: https://doi.org/10.54216/FPA.110101
This study presents a comprehensive analysis of the existing techniques and applications of artificial intelligence (AI) to cardiovascular disease diagnosis. The application of AI to the diagnosis of cardiac diseases can enhance diagnostic precision, diagnostic throughput, and patient outcomes. This literature survey analyzes state-of-the-art AI-based methods, rates their efficiency, examines potential future research and development avenues, and finds challenges and limitations, providing a foundational overview of main developments in AI, machine learning, deep learning, and quantum computing in relation to heart disease prevention. This study seeks to guide the use of AI-based techniques for heart disease detection, having an ultimate objective of enhancing patient outcomes through research and development. This review mainly emphasizes the significance of further studying and advancing AI for its ability to revolutionize the diagnosis and management of heart diseases.
Artificial intelligence , heart disease diagnosis , deep learning , quantum computing , machine learning , cardiovascular disease , Cleveland dataset.
[1] N. Benameur et al., “Parametric methods for the regional assessment of cardiac wall motion abnormalities: Comparison study,” Computers, Materials and Continua, vol. 69, no. 1, pp. 1233–1252, 2021, doi: 10.32604/cmc.2021.016860.
[2] A. Al Ahdal et al., “Monitoring Cardiovascular Problems in Heart Patients Using Machine Learning,” J Healthc Eng, vol. 2023, pp. 1–15, Feb. 2023, doi: 10.1155/2023/9738123.
[3] K. Kumar et al., “Identification of Cardiac Patients Based on the Medical Conditions Using Machine Learning Models,” Comput Intell Neurosci, vol. 2022, 2022, doi: 10.1155/2022/5882144.
[4] E. J. Benjamin et al., “Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association,” Circulation, vol. 139, no. 10, pp. e56–e528, Mar. 2019, doi: 10.1161/CIR.0000000000000659.
[5] M. et al Abu yazid, “An Empirical Study of Machine Learning (ML) Algorithms in the Perspective of Cardiovascular Disease (CVD) Prediction,” 2018. [Online]. Available: https://ssrn.com/abstract=4117242
[6] L. Jayasree and D. Usha, “A Comparison Analysis of Machine Learning Algorithms on Cardiovascular Disease Prediction,” International Journal on Future Revolution in Computer Science & Communication Engineering, vol. 8, no. 3, pp. 14–22, Sep. 2022, doi: 10.17762/ijfrcsce.v8i3.2087.
[7] A. Al Bataineh and S. Manacek, “MLP-PSO Hybrid Algorithm for Heart Disease Prediction,” J Pers Med, vol. 12, no. 8, Aug. 2022, doi: 10.3390/jpm12081208.
[8] M. Jubier Ali, B. Chandra Das, S. Saha, A. A. Biswas, and P. Chakraborty, “A Comparative Study of Machine Learning Algorithms to Detect Cardiovascular Disease with Feature Selection Method,” in Lecture Notes on Data Engineering and Communications Technologies, Springer Science and Business Media Deutschland GmbH, 2022, pp. 573–586. doi: 10.1007/978-981-19-2347-0_45.
[9] B. Prajapati, S. Parikh, and J. Patel, “An Implementation of IRTBS—for Observing Cardiac Patients,” in Smart Innovation, Systems and Technologies, 2022. doi: 10.1007/978-981-16-4177-0_21.
[10] M. M. Rahma and A. D. Salman, “Heart Disease Classification-Based on the Best Machine Learning Model,” Iraqi Journal of Science, vol. 63, no. 9, pp. 3966–3976, 2022, doi: 10.24996/ijs.2022.63.9.28.
[11] N. Bora, S. Gutta, and A. Hadaegh, “Using Machine Learning to Predict Heart Disease,” WSEAS TRANSACTIONS ON BIOLOGY AND BIOMEDICINE, vol. 19, pp. 1–9, Jan. 2022, doi: 10.37394/23208.2022.19.1.
[12] R. Rone Sarra, A. Musa Dinar, and M. Abed Mohammed, “Enhanced accuracy for heart disease prediction using artificial neural network,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 29, no. 1, p. 375, Jan. 2022, doi: 10.11591/ijeecs.v29.i1.pp375-383.
[13] M. M. Yaqoob et al., “Modified Artificial Bee Colony Based Feature Optimized Federated Learning for Heart Disease Diagnosis in Healthcare,” Applied Sciences, vol. 12, no. 23, p. 12080, Nov. 2022, doi: 10.3390/app122312080.
[14] A. Ullah, S. A. Khan, T. Alam, S. Luma-Osmani, and M. Sadie, “Heart disease classification using various heuristic algorithms,” International Journal of Advances in Applied Sciences, vol. 11, no. 2, p. 158, Jun. 2022, doi: 10.11591/ijaas.v11.i2.pp158-167.
[15] R. R. Sarra, A. M. Dinar, M. A. Mohammed, and K. H. Abdulkareem, “Enhanced Heart Disease Prediction Based on Machine Learning and χ2 Statistical Optimal Feature Selection Model,” Designs (Basel), vol. 6, no. 5, Oct. 2022, doi: 10.3390/designs6050087.
[16] K. Karthick, S. K. Aruna, R. Samikannu, R. Kuppusamy, Y. Teekaraman, and A. R. Thelkar, “Implementation of a Heart Disease Risk Prediction Model Using Machine Learning,” Comput Math Methods Med, vol. 2022, 2022, doi: 10.1155/2022/6517716.
[17] K. Amen, M. Zohdy, and M. Mahmoud, “Machine Learning for Multiple Stage Heart Disease Prediction,” Academy and Industry Research Collaboration Center (AIRCC), Sep. 2020, pp. 205–223. doi: 10.5121/csit.2020.101118.
[18] M. H. Abu Yazid, M. Haikal Satria, S. Talib, and N. Azman, “Artificial Neural Network Parameter Tuning Framework For Heart Disease Classification,” in 2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2018, pp. 674–679. doi: 10.1109/EECSI.2018.8752821.
[19] R. R. Sarra, A. M. Dinar, M. A. Mohammed, M. K. A. Ghani, and M. A. Albahar, “A Robust Framework for Data Generative and Heart Disease Prediction Based on Efficient Deep Learning Models,” Diagnostics, vol. 12, no. 12, p. 2899, Nov. 2022, doi: 10.3390/diagnostics12122899.
[20] A. U. Rahman, M. Saeed, M. A. Mohammed, S. Krishnamoorthy, S. Kadry, and F. Eid, “An Integrated Algorithmic MADM Approach for Heart Diseases’ Diagnosis Based on Neutrosophic Hypersoft Set with Possibility Degree-Based Setting,” Life, vol. 12, no. 5, May 2022, doi: 10.3390/life12050729.
[21] A.-R. Hriday, L. Mia, M. Limon Mia, and M. Sazol Ahmmed, “Prediction of Heart Disease Using Different Machine Learning Algorithms And Their Performance Assessment Feasibility study for application of Industry 4.0 in Bangladesh Garments Sector View project Prediction of Heart Disease Using Different Machine Learning Algorithms And Their Performance Assessment,” 2022.
[22] S. B. Shuvo, S. N. Ali, S. I. Swapnil, M. S. Al-Rakhami, and A. Gumaei, “CardioXNet: A Novel Lightweight Deep Learning Framework for Cardiovascular Disease Classification Using Heart Sound Recordings,” IEEE Access, vol. 9, pp. 36955–36967, 2021, doi: 10.1109/ACCESS.2021.3063129.
[23] A. Ammar, O. Bouattane, and M. Youssfi, “Automatic cardiac cine MRI segmentation and heart disease classification,” Computerized Medical Imaging and Graphics, vol. 88, Mar. 2021, doi: 10.1016/j.compmedimag.2021.101864.
[24] M. A. Khan, “An IoT Framework for Heart Disease Prediction Based on MDCNN Classifier,” IEEE Access, vol. 8, pp. 34717–34727, 2020, doi: 10.1109/ACCESS.2020.2974687.
[25] F. Ali et al., “A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion,” Information Fusion, vol. 63, pp. 208–222, Nov. 2020, doi: 10.1016/j.inffus.2020.06.008.
[26] Q. U. A. Mastoi et al., “Novel DERMA Fusion Technique for ECG Heartbeat Classification,” Life, vol. 12, no. 6, Jun. 2022, doi: 10.3390/life12060842.
[27] J. Botros, F. Mourad-Chehade, and D. Laplanche, “CNN and SVM-Based Models for the Detection of Heart Failure Using Electrocardiogram Signals,” Sensors, vol. 22, no. 23, Dec. 2022, doi: 10.3390/s22239190.
[28] M. Elhoseny et al., “A new multi-agent feature wrapper machine learning approach for heart disease diagnosis,” Computers, Materials and Continua, vol. 67, no. 1, pp. 51–71, 2021, doi: 10.32604/cmc.2021.012632.
[29] S. R. Ganorkar and M. K. Kute, “Classification of Heart Disease,” International Research Journal of Engineering and Technology, p. 1113, 2008, [Online]. Available: www.irjet.net
[30] A. Melnikov, M. Kordzanganeh, A. Alodjants, and R.-K. Lee, “Quantum Machine Learning: from physics to software engineering,” Jan. 2023, [Online]. Available: http://arxiv.org/abs/2301.01851
[31] H. Heidari and G. Hellstern, “Early heart disease prediction using hybrid quantum classification.”
[32] S. S. Kavitha and N. Kaulgud, “Quantum K-means clustering method for detecting heart disease using quantum circuit approach,” Soft computer, 2022, doi: 10.1007/s00500-022-07200-x.
[33] U. Ullah, A. G. O. Jurado, I. D. Gonzalez, and B. Garcia-Zapirain, “A Fully Connected Quantum Convolutional Neural Network for Classifying Ischemic Cardiopathy,” IEEE Access, vol. 10, pp. 134592–134605, 2022, doi: 10.1109/ACCESS.2022.3232307.
[34] M. Grossi et al., “Mixed Quantum-Classical Method For Fraud Detection with Quantum Feature Selection,” IEEE Transactions on Quantum Engineering, 2022, doi: 10.1109/TQE.2022.3213474.
[35] M. F. I. Soumik and M. A. Hossain, “Brain Tumor Classification with Inception Network Based Deep Learning Model Using Transfer Learning,” in 2020 IEEE Region 10 Symposium, TENSYMP 2020, 2020. doi: 10.1109/TENSYMP50017.2020.9230618.
[36] G. Abdulsalam, S. Meshoul, and H. Shaiba, “Explainable Heart Disease Prediction Using Ensemble-Quantum Machine Learning Approach,” Intelligent Automation and Soft Computing, vol. 36, no. 1, pp. 761–779, 2023, doi: 10.32604/iasc.2023.032262.
[37] G. San, M. Silva, and E. L. Droguett, “Quantum Machine Learning for Health State Diagnosis and Prognostics.”
[38] P.-N. Jone et al., “Artificial Intelligence in Congenital Heart Disease,” JACC: Advances, vol. 1, no. 5, p. 100153, Dec. 2022, doi: 10.1016/j.jacadv.2022.100153.
[39] C. Krittanawong, H. Zhang, Z. Wang, M. Aydar, and T. Kitai, “REVIEW TOPIC OF THE WEEK Artificial Intelligence in Precision Cardiovascular Medicine,” 2017.
[40] O. Ali, W. Abdelbaki, A. Shrestha, E. Elbasi, M. A. A. Alryalat, and Y. K. Dwivedi, “A systematic literature review of artificial intelligence in the healthcare sector: Benefits, challenges, methodologies, and functionalities,” Journal of Innovation and Knowledge, vol. 8, no. 1, Jan. 2023, doi: 10.1016/j.jik.2023.100333.
[41] P. Kumar, S. Chauhan, and L. K. Awasthi, “Artificial Intelligence in Healthcare: Review, Ethics, Trust Challenges & Future Research Directions,” Eng Appl Artif Intell, vol. 120, p. 105894, Apr. 2023, doi: 10.1016/J.ENGAPPAI.2023.105894.
[42] N. Ghaffar Nia, E. Kaplanoglu, and A. Nasab, “Evaluation of artificial intelligence techniques in disease diagnosis and prediction,” Discover Artificial Intelligence, vol. 3, no. 1, p. 5, Jan. 2023, doi: 10.1007/s44163-023-00049-5.
[43] A. Jadhav, A. Rasool, and M. Gyanchandani, “Quantum Machine Learning: Scope for real-world problems,” Procedia Computer Sci, vol. 218, pp. 2612–2625, 2023, doi: 10.1016/j.procs.2023.01.235.
[44] D. Salama AbdElminaam, N. Mohamed, H. Wael, A. Khaled, and A. Moataz, “ML Heart Dis Prediction: Heart Disease Prediction using Machine Learning,” 2023.
[45] A. K. Dass, S. Das, S. R. Pattanaik, and M. Nayak, “Comparison of Heart Disease Prediction Using different Machine Learning Algorithms”, doi: 10.21203/rs.3.rs-2550067/v1.
[46] R. Bharti, A. Khamparia, M. Shabaz, G. Dhiman, S. Pande, and P. Singh, “Prediction of Heart Disease Using a Combination of Machine Learning and Deep Learning,” Comput Intell Neurosci, vol. 2021, 2021, doi: 10.1155/2021/8387680.