Volume 9 , Issue 1 , PP: 59-69, 2022 | Cite this article as | XML | Html | PDF | Full Length Article
Noura Metawa 1 * , Maha Mutawea 2
Doi: https://doi.org/10.54216/FPA.090105
Stock exchanges are developed as an essential component of economies, as they can promote financial and capital gain. The stock market is network of economic connections where share is bought and sold. Stock Market Prediction (SMP) is quite useful to investors. An effective forecast of stock prices is offer shareholders with suitable help in making appropriate decisions regarding if sell or purchase shares. The employ of Machine Learning (ML) and Sentiment Analysis (SA) on data in microblogging sites are developed as a famous approach to SMP. However, the heterogenous data fusion in stock market field is a big challenge. This paper introduces an effective Cat Swarm Optimization with Machine Learning Enabled Microblogging Sentiment Analysis for Stock Price Prediction technique. The presented model investigates the social media sentiments to foresee SPP. Firstly, the proposed model executes data pre-processing and Glove word embedding approach. Next, the weighted extreme learning machine approach was utilized for the classification of sentiments for SPP. Lastly, the CSO system was exploited for optimal adjustment of the parameters related to the WELM model. The experimental validation of the proposed approach was executed using microblogging data. The results show that the proposed method outperforms the previous studies.
Sentiment analysis , Microblogging , Stock price prediction , Heterogeneous Data Fusion , Machine learning , forecasting model
[1] Chun, J., Ahn, J., Kim, Y. and Lee, S., 2021. Using deep learning to develop a stock price prediction model based on individual investor emotions. Journal of Behavioral Finance, 22(4), pp.480-489.
[2] Hajiali, M., 2020. Big data and sentiment analysis: A comprehensive and systematic literature review. Concurrency and Computation: Practice and Experience, 32(14), p.e5671.
[3] Gupta, I., Madan, T.K., Singh, S. and Singh, A.K., 2022. HiSA-SMFM: Historical and Sentiment Analysis based Stock Market Forecasting Model. arXiv preprint arXiv:2203.08143.
[4] Daudert, T., 2021. Exploiting textual and relationship information for fine-grained financial sentiment analysis. Knowledge-Based Systems, 230, p.107389.
[5] Issam, A., Mounir, A.K. and El Mendili Saida, E.M.F., 2022. Financial sentiment analysis of tweets based on deep learning approach. Indonesian Journal of Electrical Engineering and Computer Science, 25(3), pp.1759-1770.
[6] Hossain, M.S., Rahman, M.F., Uddin, M.K. and Hossain, M.K., 2022. Customer sentiment analysis and prediction of halal restaurants using machine learning approaches. Journal of Islamic Marketing, (ahead-of-print).
[7] Nawaz, U., Ali, A., Raza, U.A. and Shehzadi, K., 2021. A Survey: Sentimental Analysis on Product Reviews Using (MLT) Machine Learning Techniques and Approaches. International Journal, 10(2).
[8] Kanakaraddi, S.G., Chikaraddi, A.K., Gull, K.C. and Hiremath, P.S., 2020, February. Comparison study of sentiment analysis of tweets using various machine learning algorithms. In 2020 International Conference on Inventive Computation Technologies (ICICT) (pp. 287-292). IEEE.
[9] Wadawadagi, R.S. and Pagi, V.B., 2020. Sentiment analysis on social media: Recent trends in machine learning. Handbook of Research on Emerging Trends and Applications of Machine Learning, pp.508- 527.
[10] Malawana, M.V.D.H.P. and Rathnayaka, R.T., 2020, December. The Public Sentiment analysis within Big data Distributed system for Stock market prediction–A case study on Colombo Stock Exchange. In 2020 5th International Conference on Information Technology Research (ICITR) (pp. 1-6). IEEE.
[11] Koukaras, P., Nousi, C. and Tjortjis, C., 2022, May. Stock Market Prediction Using Microblogging Sentiment Analysis and Machine Learning. In Telecom (Vol. 3, No. 2, pp. 358-378). MDPI.
[12] Keramatfar, A., Amirkhani, H. and Bidgoly, A.J., 2022. Modeling Tweet Dependencies with Graph Convolutional Networks for Sentiment Analysis. Cognitive Computation, pp.1-12
[13] Basiri, M.E., Nemati, S., Abdar, M., Asadi, S. and Acharrya, U.R., 2021. A novel fusion-based deep learning model for sentiment analysis of COVID-19 tweets. Knowledge-Based Systems, 228, p.107242
[14] Yıldırım, S., Jothimani, D., Kavaklioğlu, C. and Başar, A., 2019, December. Deep learning approaches for sentiment analysis on financial microblog dataset. In 2019 IEEE International Conference on Big Data (Big Data) (pp. 5581-5584). IEEE
[15] Liu, J., Lu, Z. and Du, W., 2019, January. Combining enterprise knowledge graph and news sentiment analysis for stock price prediction. In Proceedings of the 52nd Hawaii International Conference on System Sciences
[16] Pasupulety, U., Anees, A.A., Anmol, S. and Mohan, B.R., 2019, June. Predicting stock prices using ensemble learning and sentiment analysis. In 2019 IEEE Second International Conference on Artificial Intelligence and Knowledge Engineering (AIKE) (pp. 215-222). IEEE
[17] Bouktif, S., Fiaz, A. and Awad, M., 2019, October. Stock market movement prediction using disparate text features with machine learning. In 2019 Third International Conference on Intelligent Computing in Data Sciences (ICDS) (pp. 1-6). IEEE.
[18] Oota, S.R., Manwani, N. and Bapi, R.S., 2018, December. fMRI semantic category decoding using linguistic encoding of word embeddings. In International Conference on Neural Information Processing (pp. 3-15). Springer, Cham.
[19] Wang, Y., Wang, A., Ai, Q. and Sun, H., 2019. Ensemble based fuzzy weighted extreme learning machine for gene expression classification. Applied Intelligence, 49(3), pp.1161-1171.
[20] Huang, J., Asteris, P.G., Manafi Khajeh Pasha, S., Mohammed, A.S. and Hasanipanah, M., 2020. A new auto-tuning model for predicting the rock fragmentation: a cat swarm optimization algorithm. Engineering with Computers, pp.1-12.