Volume 9 , Issue 1 , PP: 32-35, 2024 | Cite this article as | XML | Html | PDF | Full Length Article
Khaled Moaz 1 *
Doi: https://doi.org/10.54216/JNFS.090104
Let I be a right (left) ideal of a ring R, then R/I is a right (left) generalized m – flat module (GmF – module) if and only if for each a Î I , there exists b Î I and a fixed positive integer m such that . In this paper, we study the characterization and properties this class of flat modules, and we give the relation between this class and generalized m- flat modules and m– regular rings, reduced rings, reversible rings and uniform rings.
Algebraic module , M-module , Flat module , Algebraic ring
[1] Brown, S. H. (1973), Rings over which every simple module is reationally complete, Canad. J. Math. 25, PP. 693 – 701.
[2] Cohn, P. M. (1999), Reversible rings, Bull. London Math. Soc. Vol. 31, PP. 641 – 648.
[3] Khalil, Sh. M. (2008), "On Generalized Pure Ideals", M. Sc. Thesis Mosul University.
[4] McCoy, N. H. (1939), generalized regular rings, Bull. Amer. Math. Soc. Vol. 45, PP. 175 - 178.
[5] Rege, M. B. (1986), On Von Neumann regular rings and SF-rings, Math. Japonica, 31(6), PP. 927 – 936.
[6] Yue Chi Ming, R. (1985), On Von Neumann regular rings XII, Tamkang J. Math. 16 (4), PP. 67 – 75
[7] Yu, H. P. (1995), on quasi - duo rings, Glasgow Math. J. 37, PP. 21 –31.