Journal of Neutrosophic and Fuzzy Systems

Journal DOI

https://doi.org/10.54216/JNFS

Submit Your Paper

2771-6449ISSN (Online) 2771-6430ISSN (Print)

Volume 5 , Issue 2 , PP: 69-80, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

Four-Way Turiyam based Characterization of Non-Euclidean Geometry

Prem Kumar Singh 1 *

  • 1 Department of Computer Science and Engineering, Gandhi Institute of Technology and Management-Visakhapatnam, Andhra Pradesh 530045, India - (premsingh.csjm@gmail.com)
  • Doi: https://doi.org/10.54216/JNFS.050207

    Received: September 02, 2022 Accepted: January 29, 2023
    Abstract

    Recently, a problem is addressed while dealing the data with Non-Euclidean Geometry and its characterization. The mathematician found negation of fifth postulates of Euclidean geometry easily and called as Non-Euclidean geometry. However Riemannian provided negation of second postulates also which still considered as Non-Euclidean. In this case the problem arises what will happen in case negation of other Euclid Postulates  exists. Same time total total or partial negation of Euclid postulates fails as hybrid Geometry. It become more crucial in case the data is unknown, incomplete or exists beyond the three-way space as heteroclinic pattern. To understand this problem, the current paper tried to distinguish Euclidean, Non-Euclidean, Anti-Geometry, Neutrogeometry and Turiyam or Unknown geometry using the complement operator with an example.

    Keywords :

    Consciousness , Euclidean geometry , knowledge representation , NeutroGeometry , Non-Euclidean , Turiyam Geometry , Unknown Graph.  ,

    References

    [1]  Birkhoff  G.D.,  “A  Set  of  Postulates  for  Plane  Geometry  (Based  on  Scale  and  Protractors)”.  Annals of Mathematics, Vol. 33, 1932.

    [2]  Russell B., “Introduction: An essay on the foundations of geometry”. Cambridge University Press, 1897. 

    [3]   Coxeter  H.S.M.,  “Non-Euclidean  Geometry. University  of  Toronto  Press,  1942.  reissued  1998 by Mathematical Association of America.

    [4]  Singh  PK,  “Data  with  Non-Euclidean  Geometry  and  its  Characterization”.  Journal  of  Artificial Intelligence and Technology, Jan 2022, Volume 2, Issue 1, pp. 3-8, doi : 10.37965/jait.2021.12001 

    [5]   Lobachevsky  N.,  “Pangeometry,  Translator  and  Editor:  A.  Papadopoulos.  Heritage  of  European Mathematics Series". European Mathematical Society, Vol. 4, 2010.

    [6]   Jürgen J., “Riemannian Geometry and Geometric Analysis”. Berlin: Springer-Verlag (2002) 

    [7]  Bhattacharya  S.,  “A  model  to  a  Smarandache  Geometry”.  2004, http://fs.unm.edu/ModelToSmarandacheGeometry.pdf

    [8]  Popov,  M.  R.,  “The  Smarandache  Non-Geometry.  Abstracts  of  Papers  Presented  to  the   American Mathematical Society Meetings, Vol. 17, Issue 3, pp. 595, 1996. 

    [9]  Kuciuk L., and Antholy M., “An introduction to the Smarandache geometries. JP Journal of Geometry & Topology”, Vol. 5, Issue 1, 77-81, 2005, http://fs.unm.edu/IntrodSmGeom.pdf

    [10]  Smarandache  F.,  “NeutroGeometry & AntiGeometry are  alternatives  and  generalizations  of  the  NonEuclidean  Geometries”. Neutrosophic  Sets  and  Systems,  Vol.  46,  pp.  456-476,  2021. http://fs.unm.edu/NSS/NeutroGeometryAntiGeometry31.pdf

    [11]  Singh P. K., “AntiGeometry and NeutroGeometry Characterization of Non-Euclidean Data Sets”. Journal of  Neutrosophic  and  Fuzzy  Systems,  Vo  1,  Issue  1,  pp.  24-33,  2021,  doi: https://doi.org/10.54216/JNFS.0101012   

    [12]  Singh  P.  K.,  “NeutroAlgebra  and  NeutroGeometry  for  Dealing  Heteroclinic  Patterns.”  In:  Theory  and Applications of NeutroAlgebras as Generalizations of Classical Algebras, IGI Global Publishers,  2021, Chapter 6,  doi: 10.4018/978-1-6684-3495-6

    [13]  Granados  C.,  “A  note  on  AntiGeometry  and  NeutroGeometry  and  their  application  to  real  life.”Neutrosophic Sets and Systems, Vol. 49, pp. 579-593, 2022. doi: 10.5281/zenodo.6466520

    [14]  Deng X., and Papadimitriou C. H. (1990) Exploring an unknown graph," Journal of graph Theory, 32 (3):265-297, 

    [15]  Singh P.K., “Turiyam set a fourth dimension data  representation.  Journal of Applied Mathematics and Physics, Vol. 9, Issue 7, pp. 1821-1828, 2021, DOI: 10.4236/jamp.2021.97116

    [16]  Singh P.K., “Fourth dimension data representation and its analysis using Turiyam Context”. Journal of Computer and Communications, Vol. 9, Issue 6, pp. 222-229, 2021 doi: 10.4236/jcc.2021.96014

    [17]  Singh P. K., “ Data with Turiyam Set for Fourth Dimension Quantum Information Processing”. Journal of  Neutrosophic  and  Fuzzy  Systems,  Vol  1,  Issue  1,  pp.  9-23,  2021.  doi: https://doi.org/10.54216/JNFS.010101 

    [18]    Singh  PK,  Ahmad  KD,  Bal  M,   and  Aswad  M.,  “On  The  Symbolic  Turiyam  Rings.”  Journal  of Neutrosophic  and  Fuzzy  Systems,  Vol.  1  ,  No.  2  ,  pp.  80-88,  2021,  Doi    : 

    https://doi.org/10.54216/JNFS.010204

    [19]  Bal M., Singh P. K.,  and Ahmad K. D., “A Short Introduction To The Symbolic Turiyam Vector Spaces and Complex Numbers.”  Journal of Neutrosophic and Fuzzy Systems,  Vol.  2, Issue  1, pp.  76-87,  2022. doi :  https://doi.org/10.54216/JNFS.020107

    [20]  Bal M., Singh P. K.,  and  Ahmad K.  D.,    “A Short Introduction To The Concept Of Symbolic Turiyam Matrix.  Journal  of  Neutrosophic  and  Fuzzy  Systems,  Vol.  2,  Issue  1,  pp.  88-99,  2022  doi : https://doi.org/10.54216/JNFS.020108

    [21]  Bal  M.,  Singh  P.  K.,  and  Ahmad  K.  D,  “An  Introduction  To  The  Symbolic  Turiyam  R-Modules  and Turiyam Modulo Integers.”  Journal of Neutrosophic and Fuzzy Systems,  Vol.  2, Issue  2, pp.  8-19, doi: https://doi.org/10.54216/JNFS.020201

    [22]  Belnap J. N. , “A useful four-valued logic”. In J. Michael Dunn and George Epstein, editors, Proceedings of the Fifth International Symposium on Multiple-Valued Logic, Modern Uses of Multiple-Valued Logic. Indiana University, D. Reidel Publishing Company, pp 8 -37, 1975.

    [23]  Font J. M., “Belnap's Four-Valued Logic and De Morgan Lattices.” In: Logic Journal of the IGPL, Vol. 5, no. 3, pp. 1-29, 1997, doi: 10.1093/jigpal/5.3.1-e. 

    [24]  Irmak E., and Kurtuldu, Ö., “Concept  of 4th Dimension for Databases.”  In: Proceedings of  2015 IEEE 14th  International  Conference  on  Machine  Learning  and  Applications  (ICMLA),  pp.  1159-1162,  doi: 10.1109/ICMLA.2015.186.

    [25]  James A. W., “Hyperbolic Geometry”. Second edition 2005, Springer.

    [26]  Pandey L. K., Ojha K. K., Singh P.K., Singh C. S., Dwivedi S., Bergey E.A, “Diatoms image database of India  (DIDI):  a  research  tool”.  Environmental  Technology  &  Innovation,  Vol.  5,  pp.  148160,  2016. https://doi.org/10.1016/j.eti.2017.02.005

    [27]  Tixeira  da  Silva  J.A.,  Vuong  Q.H.,  “The  right  to  refuse  unwanted  citations:  rethinking  the  culture  of science around the citation”. Scientometrics, Vol. 126, pp. 5355–5360, 2021.

    [28]  Singh  P.  K.,  “t-index:  Entropy  based  random  document  and  citation  analysis  using  average  h-index.” Scientrometrics, Vol 127, pp. 637-660, 2022, doi: 10.1007/s11192-021-04222-4 

    [29]  Singh,  P.  K.,  “Quaternion  set  for  dealing  fluctuation  in  quantum  turiyam  cognition”.  Journal of Neutrosophic  and  Fuzzy  Systems,  Vol.  4,  Issue  02,  pp.  57–64,  2022.https://doi.org/10.54216/JNFS.010101 

    [30]  Singh P. K., “Air Quality Index Analysis Using Single-Valued Neutrosophic Plithogenic Graph for MultiDecision Process.” International Journal of Neutrosophic Sciences, V ol 16, Issue 1, pp. 28-141, 2021, doi:https://doi.org/10.54216/IJNS.160103

    [31]  Singh PK, “Non-Euclidean, Anti-Geometry and NeutroGeometry Characterization”. International Journal of Neutrosophic Sciences, Vol 18, Issue 3, pp. 8-19, 2022, doi :   https://doi.org/10.54216/IJNS.180301 

    [32]  Singh,  P.  K.  (2022)  “Four-Way  Turiyam  set-based  human  quantum  cognition  analysis”.  Journal  of Artificial Intelligence and Technology, Vol. 2, Issue 4, pp. 144-151 

    [33]  Ani  A.,  Mashadi  M.,  Sri  G.  "Invers  Moore-Penrose  pada  Matriks  Turiyam  Simbolik  Real."  Jambura Journal of Mathematics 5, no. 1, pp. 95-114, 2023.

    [34]  Smarandache, F., “Introduction to the symbolic plithogenic algebraic structures (revisited)”. Neutrosophic Set and System, 53, 653–665, 2023.

    [35]  Singh  Pritpal,  “Ambiguous  Set  Theory:  A  New  Approach  to  Deal  with  Unconsciousness  and Ambiguousness of Human Perception”.  Journal of Neutrosophic and Fuzzy Systems,  Vol. 5 ,  No. 1 ,  pp. 52-58, 2023

    [36]  Silva, Manuel. "The Latest Advances on AI and Robotics Applications."  Journal of Artificial Intelligence and Technology 2, no. 4, pp. 131-131, 2022.

    Cite This Article As :
    Kumar, Prem. Four-Way Turiyam based Characterization of Non-Euclidean Geometry. Journal of Neutrosophic and Fuzzy Systems, vol. , no. , 2023, pp. 69-80. DOI: https://doi.org/10.54216/JNFS.050207
    Kumar, P. (2023). Four-Way Turiyam based Characterization of Non-Euclidean Geometry. Journal of Neutrosophic and Fuzzy Systems, (), 69-80. DOI: https://doi.org/10.54216/JNFS.050207
    Kumar, Prem. Four-Way Turiyam based Characterization of Non-Euclidean Geometry. Journal of Neutrosophic and Fuzzy Systems , no. (2023): 69-80. DOI: https://doi.org/10.54216/JNFS.050207
    Kumar, P. (2023) . Four-Way Turiyam based Characterization of Non-Euclidean Geometry. Journal of Neutrosophic and Fuzzy Systems , () , 69-80 . DOI: https://doi.org/10.54216/JNFS.050207
    Kumar P. [2023]. Four-Way Turiyam based Characterization of Non-Euclidean Geometry. Journal of Neutrosophic and Fuzzy Systems. (): 69-80. DOI: https://doi.org/10.54216/JNFS.050207
    Kumar, P. "Four-Way Turiyam based Characterization of Non-Euclidean Geometry," Journal of Neutrosophic and Fuzzy Systems, vol. , no. , pp. 69-80, 2023. DOI: https://doi.org/10.54216/JNFS.050207