Journal of Neutrosophic and Fuzzy Systems

Journal DOI

https://doi.org/10.54216/JNFS

Submit Your Paper

2771-6449ISSN (Online) 2771-6430ISSN (Print)

Volume 5 , Issue 1 , PP: 41-51, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

A Study of a Support Vector Machine Algorithm with an Orthogonal Legendre Kernel According to Neutrosophic logic and Inverse Lagrangian Interpolation

Mohammed Alshikho 1 * , Maissam Jdid 2 , Said Broumi 3

  • 1 Philipps University Marburg, MSc in Data Science, Germany - (Alshikho@students.uni-marburg.de)
  • 2 Faculty member, Damascus University, Faculty of Science, Syria - (maissam.jdid66@damascusuniversity.edu.sy)
  • 3 Laboratory of Information Processing, Faculty of Science Ben M’Sik, University Hassan II, B.P 7955, Morocco - (broumisaid78@gmail.com)
  • Doi: https://doi.org/10.54216/JNFS.050105

    Received: August 18, 2022 Accepted: December 26, 2022
    Abstract

    The decision-making process is greatly affected by the data collection stage. If the data collection process is not well controlled, i.e. there is some data lost due to the poor quality of the devices used or the lack of accuracy in the data entry process...etc., this will affect the work of the SVM algorithm, which is considered one of the best. Most of the workbooks suffer from the problems of missing and anomalous data. In this paper, we propose a method to treat the missing and anomalous data by reshaping the data set defined by the classical method into the neutrosophical data set by calculating the amount of true T, false F, and neutrality I in the neutrosophical set using inverse Lagrangian interpolation. We noticed the superiority of our proposed method for processing missing data over the method of [21], then we trained a support vector machine algorithm with orthogonal legender kernel on a breast cancer dataset taken from the Statistics Department of Al-Bayrouni Hospital in Damascus, where the proposed algorithm achieved a classification accuracy of 97%. The reason we chose a support vector machine classifier with an orthogonal legender kernel has two goals: the first is to eliminate the repetition of support vectors in the feature space. The second is to solve the problem of non-linear data distribution.

    Keywords :

    Neutrosophic logic , Support Vector Machine , Orthogonal legend Kernel , Neutrosophic Group , Inverse Lagrangian Interpolation.

    References

    [1]  Kirkos, Efstathios & Spathis, Charalambos & Manolopoulos, Yannis. (2007). Data mining techniques 

    for the detection of fraudulent financial statements. Expert Systems with Applications, 32(4), 995-1003. 

    Expert Systems with Applications. 32. 995-1003. 10.1016/j.eswa.2006.02.016..

    [2]  ALGORE.M,2021,  MACHINE  LEARNING  The  complete  Math  Guide  to  Master  Data  Science  with 

    Python and Developing Artificial Intelligence ,

    [3]   Quinto, Butch. (2020). Next-Generation Machine Learning with Spark: Covers XGBoost, LightGBM, 

    Spark NLP, Distributed Deep Learning with Keras, and More. 10.1007/978-1-4842-5669-5.

    [4]  Hamel,  Lutz.  (2009).  Knowledge  Discovery  with  Support  Vector  Machines.  231-235. 

    10.1002/9780470503065.refs.

    [5]   JAFARZADEH. SZ, AMINIAN. M, EFATTI. S, 2013- A Set of New Kernel Function For Support 

    Vector Machines: An Approach Based On Chebyshev Polynomials. ICCKE 2013, 412-416.

    [6]  MOGHADDAM.  VH,  HAMIDZADEH.  J,  2016- New  Hermite  Orthogonal  Polynomial  Kernel  And 

    Combined Kernel In Support Vector Machine Classifier. Pattern Recognition, 60 ,921-935.

    [7]  Z. -B. Pan, H. Chen and X. -H. You, "Support vector machine with orthogonal Legendre kernel," 2012 

    International  Conference  on  Wavelet  Analysis  and  Pattern  Recognition,  2012,  pp.  125-130,  doi: 

    10.1109/ICWAPR.2012.6294766.

    [8]  Broumi  S.  and  Smarandache,  F.,  Correlation  coefficient  of  interval  neutrosophic  set,  Appl.  Mech. 

    Mater., 436:511–517, 2013.

    [9]  Broumi,  S.;  Smarandache,  F.;  Talea,  M.;  Bakali,  A.  Operations  on  Interval  Valued Neutrosophic 

    Graphs; Infinite Study; Modern Science Publisher: New York, NY, USA, 2016.

    [10] ] Abdel-Basst, M., Mohamed, R., Elhoseny, M., " A model for the effective COVID-19 identification in 

    uncertainty environment using primary symptoms and CT scans." Health Informatics Journal, 2020.

    [11] Smarandache, F., Khalid, H., "Neutrosophic Precalculus and Neutrosophic Calculus (second enlarged 

    edition) ", Pons Publishing House / Pons asbl, pp.20-22, 2018.

    [12] Jdid .M, Alhabib.R ,and Salama.A.A, The static model of inventory management without a deficit 

    with Neutrosophic logic, International Journal of Neutrosophic Science (IJNS), Volume 16, Issue 1, 

    PP: 42-48, 2021.

    [13] Jdid .M, Salama.A.A , Alhabib.R ,Khalid .H, and Alsuleiman .F, Neutrosophic Treatment of the static 

    model of inventory management with deficit , International Journal of Neutrosophic Science (IJNS), 

    Volume 18, Issue 1, PP: 20-29, 2022.

    [14] Jdid  .M,  Alhabib.R  ,Bahbouh  .O  ,  Salama.A.A  and  Khalid  .H,  The  Neutrosophic  Treatment  for 

    multiple  storage  problem  of  finite  materials  and  volumes,  International  Journal  of  Neutrosophic 

    Science (IJNS), Volume 18, Issue 1, PP: 42-56, 2022.

    [15] Jdid  .M,  Alhabib.R  and   Salama.A.A,  Fundamentals  of  Neutrosophical  Simulation  for  Generating 

    Random Numbers Associated with Uniform Probability Distribution, Neutrosophic Sets and Systems, 

    49, 2022

    [16] Jdid .M, Alhabib.R ,Khalid .H, and Salama.A.A, the Neutrosophic Treatment of the static model for 

    the inventory management with safety reserve , International Journal of Neutrosophic Science (IJNS), 

    Volume 18, Issue 2, PP: 262-271, 2022.

    [17] Jdid .M, Salama.A.A and Khalid .H, Neutrosophic handling of the simplex direct algorithm to define 

    the  optimal  solution  in  linear  programming  ,  International  Journal  of  Neutrosophic  Science  (IJNS), 

    Volume 18, Issue 1, PP: 30-41, 2022.

    [18] Jdid  .M,  and  Khalid  .H,  mysterious   Neutrosophic  linear  models  ,  International  Journal  of 

    Neutrosophic Science (IJNS), Volume 18, Issue 2, PP: 243-253, 2022.

    [19] Maissam  Jdid,  Basel  Shahin,  Fatima  Al  Suleiman,  Important  Neutrosophic  Rules  for  DecisionMaking in the Case of Uncertain Data, International Journal of Neutrosophic Science (IJNS), Volume 

    18, Issue3, PP: 166-176, 2022

    [20] Maissam  Jdid,  Rafif  Alhabib,  Neutrosophic  dynamic  programming,  International  Journal  of 

    Neutrosophic Science (IJNS), Volume 18, Issue3, PP: 157-165, 2022.

    [21] Ju,  Wen  &  Cheng,  H.D..  (2013).  A  novel  neutrosophic  logic  SVM  (N-SVM)  and  its  application  to 

    image categorization. New Mathematics and Natural Computation. 09. 10.1142/S1793005713500038.

    [22] Hemdan, E.E.-D., Shouman, M.A., Karar, M.E.: Covidx-net: a framework of deep learning

    [23] classifiers to diagnose covid-19 in x-ray images (2020). arXiv preprint arXiv:2003.11055

    [24] Pannu, H.S., Singh, D., Malhi, A.K.: Improved particle swarm optimization based adaptive neuro-fuzzy 

    inference system for benzene detection. CLEAN–Soil Air Water 46(5), 1700162 (2018)

    [25] Jain, G., Mittal, D., Thakur, D., Mittal, M.K.: A deep learning approach to detect covid-19 coronavirus 

    with X-Ray images. Biocybernetics Biomed. Eng. 40(4), 1391–1405 (2020)

    [26] Agarwal, Ravi P., and Donal O’Regan. “Legendre Polynomials and Functions.” Ordinary and Partial 

    Differential Equations, n.d., 47–56. doi:10.1007/978-0-387-79146-3_7.

    [27] Shawe-Taylor,  John  &  Sun,  Shiliang.  (2014).  Kernel  Methods  and  Support  Vector  Machines. 

    10.1016/B978-0-12-396502-8.00016-4.

    [28] Djelloul,  Naima  &  Abdessamad,  Amir.  (2019).  Analysis  of  legendre  polynomial  kernel  in  support 

    vector  machines.  International  Journal  of  Computing  Science  and  Mathematics.  10.  580. 

    10.1504/IJCSM.2019.10025670.

    [29] Turhan, Muhammed & Şengür, Dönüş & Karabatak, Songül & Guo, Yanhui & Smarandache, Florentin. 

    (2018).  Neutrosophic  Weighted  Support  Vector  Machines  for  the  Determination  of  School 

    Administrators Who Attended an Action Learning Course Based on Their Conflict-Handling Styles.

    [30] Evgeniou,  Theodoros  &  Pontil,  Massimiliano.  (2001).  Support  Vector  Machines:  Theory  and 

    Applications. 2049. 249-257. 10.1007/3-540-44673-7_12.

    [31] Ghosh, Debdas & Singh, Abhishek & Shukla, Kuldeep Kumar & Manchanda, Kartik. (2019). Extended 

    Karush-Kuhn-Tucker Condition for Constrained Interval Optimization Problems and its Application in 

    Support Vector Machines. Information Sciences. 504. 10.1016/j.ins.2019.07.017.

    [32] Nasr Deen Eid,(2011), Numerical analysis, Directorate of University Books and Publications, Aleppo 

    University

     

    [33] Mahmoud Mohamed Ahmed,Numerical Analysis1,Tishreen University,2010

    Cite This Article As :
    Alshikho, Mohammed. , Jdid, Maissam. , Broumi, Said. A Study of a Support Vector Machine Algorithm with an Orthogonal Legendre Kernel According to Neutrosophic logic and Inverse Lagrangian Interpolation. Journal of Neutrosophic and Fuzzy Systems, vol. , no. , 2023, pp. 41-51. DOI: https://doi.org/10.54216/JNFS.050105
    Alshikho, M. Jdid, M. Broumi, S. (2023). A Study of a Support Vector Machine Algorithm with an Orthogonal Legendre Kernel According to Neutrosophic logic and Inverse Lagrangian Interpolation. Journal of Neutrosophic and Fuzzy Systems, (), 41-51. DOI: https://doi.org/10.54216/JNFS.050105
    Alshikho, Mohammed. Jdid, Maissam. Broumi, Said. A Study of a Support Vector Machine Algorithm with an Orthogonal Legendre Kernel According to Neutrosophic logic and Inverse Lagrangian Interpolation. Journal of Neutrosophic and Fuzzy Systems , no. (2023): 41-51. DOI: https://doi.org/10.54216/JNFS.050105
    Alshikho, M. , Jdid, M. , Broumi, S. (2023) . A Study of a Support Vector Machine Algorithm with an Orthogonal Legendre Kernel According to Neutrosophic logic and Inverse Lagrangian Interpolation. Journal of Neutrosophic and Fuzzy Systems , () , 41-51 . DOI: https://doi.org/10.54216/JNFS.050105
    Alshikho M. , Jdid M. , Broumi S. [2023]. A Study of a Support Vector Machine Algorithm with an Orthogonal Legendre Kernel According to Neutrosophic logic and Inverse Lagrangian Interpolation. Journal of Neutrosophic and Fuzzy Systems. (): 41-51. DOI: https://doi.org/10.54216/JNFS.050105
    Alshikho, M. Jdid, M. Broumi, S. "A Study of a Support Vector Machine Algorithm with an Orthogonal Legendre Kernel According to Neutrosophic logic and Inverse Lagrangian Interpolation," Journal of Neutrosophic and Fuzzy Systems, vol. , no. , pp. 41-51, 2023. DOI: https://doi.org/10.54216/JNFS.050105