Journal of Neutrosophic and Fuzzy Systems

Journal DOI

https://doi.org/10.54216/JNFS

Submit Your Paper

2771-6449ISSN (Online) 2771-6430ISSN (Print)

Volume 3 , Issue 2 , PP: 08-18, 2022 | Cite this article as | XML | Html | PDF | Full Length Article

Secure Edge Domination in Neutrosophic Graphs

Sivasankar S 1 * , Said Broumi 2

  • 1 Department of Mathematics, RV Institute of Technology and Management, Bangalore - (sivshankar@gmail.com)
  • 2 Laboratory of Information Processing, Faculty of Science Ben M’Sik, University Hassan II, Casablanca, Morocco - (broumisaid78@gmail.com)
  • Doi: https://doi.org/10.54216/JNFS.030201

    Received: March 12, 2022 Accepted: June 22, 2022
    Abstract

    The concepts of Neutrosophic secure edge domination number and neutrosophic total secure edge domination number in single valued neutrosophic graphs (SVNG) with strong arcs are introduced and analysed in this paper, and some of their properties are studied. The relationship between the neutrosophic secure edge dominance number  and its inverse  is presented. The concepts inverse neutrosophic total edge domination set and inverse neutrosophic total edge domination number are also defined. Some of these concepts' properties are investigated.

    Keywords :

    Edge dominating set , Neutrosophic secure edge dominating number , inverse neutrosophic edge domination number

    References

    [1] Akram, M. Bipolar fuzzy graphs. Information sciences, 181, 24, pp. 5548-5564, 2011.

    [2] Atanassov.K.T., Intuitionistic fuzzy sets: Theory and applications, Studies in fuzziness and soft

    computing, Heidelberg, New York, Physica-Verl.,1999.

    [3] S. Arumugam and S. Velammal, Edge domination in graphs, Taiwanese Journal of Mathematics, 2(2)

    (1998), 173-179.

    [4] Berge, C. Graphs and hypergraphs, North Holland Amsterdam 1973.

    [5] Broumi, S.; Nagarajan, D.; Bakali, A.; Talea, M.; Smarandache, F.; Lathamaheswari, M. The shortest

    path problem in interval valued trapezoidal and triangular neutrosophic environment. Complex Intell.

    Syst. 2019.

    [6] Broumi, S., Smarandache, F., Talea, M. and Bakali, A. Single valued neutrosophic graphs: degree, order

    and size. IEEE international conference on fuzzy systems, pp. 2444-2451,2016.

    [7] G.J. Chang, Algorithmic aspects of domination in graphs, in: D.Z. Du, P.M. Pardalos (Eds.), Handbook

    of Combinatorial Optimization, Vol. 3, Kluwer, Boston, MA, (1998), 339-405.

    [8] Hussain, S. S., Hussain, R., and Smarandache, F. Domination number in neutrosophic soft

    graphs. Neutrosophic Sets and Systems, 28, pp. 228-244, (2019).

    [9] Kandasamy Vasantha, K. Ilanthenral, and Florentin Smarandache. Neutrosophic graphs: a new

    dimension to graph theory. Infinite Study, 2015.

    [10] M.G.Karunambigai, S.Sivasankar and K.Palanivel, Different types of Domination in Intuitionistic Fuzzy

    Graph, Annals of Pure and Applied Mathematics, 14(1)(2017), 87-101.

    [11] M.G.Karunambigai, S.Sivasankar and K.Palanivel, Secure domination in fuzzy graphs and intuitionistic

    fuzzy graphs, Annals of Fuzzy Mathematics and Informatics, 14(1)(2017), 419-431.

    [12] M.G.Karunambigai, S.Sivasankar and K.Palanivel, Secure edge domination in intuitionistic fuzzy

    graphs, International Journal of Mathematics Achieve, 9(1)(2018), 190-196.

    [13] V.R. Kulli, Secure and Inverse Secure Total Edge Domination and Some Secure and Inverse Secure

    Fuzzy Domination Parameters, International Journal of Fuzzy Mathematical Archive, 11(1)(2016),

    25-30.

    [14] Merouane, H. B. and Chellali, M. On secure domination in graphs, Information Processing Letters, 115,

    pp. 786-790, 2015.

    [15] Nagoorgani, A and Chandrasekaran, V. T. Domination in fuzzy graph, Advances in fuzzy sets and

    systems, 1, pp.17-26, 2006.

    [16] Nagoorgani, A and Prasanna Devi, Edge Domination and independence in fuzzy graph, Advances in

    fuzzy sets and systems, 15, pp.73-84, 2013.

    [17] Ore, O. Theory of graphs, American Mathematical Society Colloquium Publications, 38, 1962.

    [18] R.Parvathi and M.G. Karunambigai, Intuitionistic Fuzzy Graphs, Computational Intelligence, Theory

    and applications, (2006), 139-150.

    [19] R. Parvathi and G. Thamizhendhi, Domination in intuitionistic fuzzy graphs, Notes on Intuitionistic

    Fuzzy Sets 16 (2010), 39-49.

    [20] A. Somasundaram and S. Somasundaram. Domination in fuzzy graphs-I. Pattern Recognition Letters

    19(9) (1998), 787-791.

    [21] N. Vinodkumar and G. Geetharamani, Vertex edge domination in operations of fuzzy graphs,

    International Journal of Advanced Engineering Technology, 7(2)(2016), 401-404.

    [22] Rosenfeld, A. Fuzzy graphs: Fuzzy sets and their applications to cognitive and decision processes.

    Academic press, pp. 77-95, 1975.

    [23] Zadeh, L.A.: Fuzzy sets, Information and Control 8, pp. 338-353, 1965.

    Cite This Article As :
    S, Sivasankar. , Broumi, Said. Secure Edge Domination in Neutrosophic Graphs. Journal of Neutrosophic and Fuzzy Systems, vol. , no. , 2022, pp. 08-18. DOI: https://doi.org/10.54216/JNFS.030201
    S, S. Broumi, S. (2022). Secure Edge Domination in Neutrosophic Graphs. Journal of Neutrosophic and Fuzzy Systems, (), 08-18. DOI: https://doi.org/10.54216/JNFS.030201
    S, Sivasankar. Broumi, Said. Secure Edge Domination in Neutrosophic Graphs. Journal of Neutrosophic and Fuzzy Systems , no. (2022): 08-18. DOI: https://doi.org/10.54216/JNFS.030201
    S, S. , Broumi, S. (2022) . Secure Edge Domination in Neutrosophic Graphs. Journal of Neutrosophic and Fuzzy Systems , () , 08-18 . DOI: https://doi.org/10.54216/JNFS.030201
    S S. , Broumi S. [2022]. Secure Edge Domination in Neutrosophic Graphs. Journal of Neutrosophic and Fuzzy Systems. (): 08-18. DOI: https://doi.org/10.54216/JNFS.030201
    S, S. Broumi, S. "Secure Edge Domination in Neutrosophic Graphs," Journal of Neutrosophic and Fuzzy Systems, vol. , no. , pp. 08-18, 2022. DOI: https://doi.org/10.54216/JNFS.030201