Volume 3 , Issue 2 , PP: 08-18, 2022 | Cite this article as | XML | Html | PDF | Full Length Article
Sivasankar S 1 * , Said Broumi 2
Doi: https://doi.org/10.54216/JNFS.030201
The concepts of Neutrosophic secure edge domination number and neutrosophic total secure edge domination number in single valued neutrosophic graphs (SVNG) with strong arcs are introduced and analysed in this paper, and some of their properties are studied. The relationship between the neutrosophic secure edge dominance number and its inverse is presented. The concepts inverse neutrosophic total edge domination set and inverse neutrosophic total edge domination number are also defined. Some of these concepts' properties are investigated.
Edge dominating set , Neutrosophic secure edge dominating number , inverse neutrosophic edge domination number
[1] Akram, M. Bipolar fuzzy graphs. Information sciences, 181, 24, pp. 5548-5564, 2011.
[2] Atanassov.K.T., Intuitionistic fuzzy sets: Theory and applications, Studies in fuzziness and soft
computing, Heidelberg, New York, Physica-Verl.,1999.
[3] S. Arumugam and S. Velammal, Edge domination in graphs, Taiwanese Journal of Mathematics, 2(2)
(1998), 173-179.
[4] Berge, C. Graphs and hypergraphs, North Holland Amsterdam 1973.
[5] Broumi, S.; Nagarajan, D.; Bakali, A.; Talea, M.; Smarandache, F.; Lathamaheswari, M. The shortest
path problem in interval valued trapezoidal and triangular neutrosophic environment. Complex Intell.
Syst. 2019.
[6] Broumi, S., Smarandache, F., Talea, M. and Bakali, A. Single valued neutrosophic graphs: degree, order
and size. IEEE international conference on fuzzy systems, pp. 2444-2451,2016.
[7] G.J. Chang, Algorithmic aspects of domination in graphs, in: D.Z. Du, P.M. Pardalos (Eds.), Handbook
of Combinatorial Optimization, Vol. 3, Kluwer, Boston, MA, (1998), 339-405.
[8] Hussain, S. S., Hussain, R., and Smarandache, F. Domination number in neutrosophic soft
graphs. Neutrosophic Sets and Systems, 28, pp. 228-244, (2019).
[9] Kandasamy Vasantha, K. Ilanthenral, and Florentin Smarandache. Neutrosophic graphs: a new
dimension to graph theory. Infinite Study, 2015.
[10] M.G.Karunambigai, S.Sivasankar and K.Palanivel, Different types of Domination in Intuitionistic Fuzzy
Graph, Annals of Pure and Applied Mathematics, 14(1)(2017), 87-101.
[11] M.G.Karunambigai, S.Sivasankar and K.Palanivel, Secure domination in fuzzy graphs and intuitionistic
fuzzy graphs, Annals of Fuzzy Mathematics and Informatics, 14(1)(2017), 419-431.
[12] M.G.Karunambigai, S.Sivasankar and K.Palanivel, Secure edge domination in intuitionistic fuzzy
graphs, International Journal of Mathematics Achieve, 9(1)(2018), 190-196.
[13] V.R. Kulli, Secure and Inverse Secure Total Edge Domination and Some Secure and Inverse Secure
Fuzzy Domination Parameters, International Journal of Fuzzy Mathematical Archive, 11(1)(2016),
25-30.
[14] Merouane, H. B. and Chellali, M. On secure domination in graphs, Information Processing Letters, 115,
pp. 786-790, 2015.
[15] Nagoorgani, A and Chandrasekaran, V. T. Domination in fuzzy graph, Advances in fuzzy sets and
systems, 1, pp.17-26, 2006.
[16] Nagoorgani, A and Prasanna Devi, Edge Domination and independence in fuzzy graph, Advances in
fuzzy sets and systems, 15, pp.73-84, 2013.
[17] Ore, O. Theory of graphs, American Mathematical Society Colloquium Publications, 38, 1962.
[18] R.Parvathi and M.G. Karunambigai, Intuitionistic Fuzzy Graphs, Computational Intelligence, Theory
and applications, (2006), 139-150.
[19] R. Parvathi and G. Thamizhendhi, Domination in intuitionistic fuzzy graphs, Notes on Intuitionistic
Fuzzy Sets 16 (2010), 39-49.
[20] A. Somasundaram and S. Somasundaram. Domination in fuzzy graphs-I. Pattern Recognition Letters
19(9) (1998), 787-791.
[21] N. Vinodkumar and G. Geetharamani, Vertex edge domination in operations of fuzzy graphs,
International Journal of Advanced Engineering Technology, 7(2)(2016), 401-404.
[22] Rosenfeld, A. Fuzzy graphs: Fuzzy sets and their applications to cognitive and decision processes.
Academic press, pp. 77-95, 1975.
[23] Zadeh, L.A.: Fuzzy sets, Information and Control 8, pp. 338-353, 1965.